Concept explainers
The magnetic field of a wave propagating through a certain nonmagnetic material is given by
Find the following:
- (a) The direction of wave propagation.
- (b) The phase velocity.
- (c) The wavelength in the material.
- (d) The relative permittivity of the material.
- (e) The electric field phasor.
(a)
The direction of wave propagation for the given condition.
Answer to Problem 1P
The direction of wave propagation for the given condition is
Explanation of Solution
Given data:
The magnetic field intensity of the wave is
Calculation:
Write the standard expression for the magnetic field phasor of TEM wave propagating in the
Here,
In the above equation positive sign is used when the wave is travelling in the
In the given magnetic field negative sign is used so the direction of wave propagation is along the
Conclusion:
Therefore, the direction of wave propagation for the given condition is
(b)
The phase velocity for the given condition.
Answer to Problem 1P
The phase velocity for the given condition is
Explanation of Solution
Calculation:
Write the standard relation of phase velocity, wave number and angular frequency of uniform plane wave.
Here,
Compare the given magnetic field and equation (1) to calculate the value of
Substitute
Conclusion:
Therefore, the phase velocity for the given condition is
(c)
The wavelength in the material.
Answer to Problem 1P
The wavelength in the material is
Explanation of Solution
Calculation:
Write the standard relation between wavelength and wave number of plane wave.
Here,
Substitute
Conclusion:
Therefore, the wavelength in the material is
(d)
The relative permittivity of the medium.
Answer to Problem 1P
The relative permittivity
Explanation of Solution
Calculation:
Write the standard relation between relative permittivity and speed of light and phase velocity.
Here,
Substitute
Conclusion:
Therefore, the relative permittivity
(e)
The electric field phasor.
Answer to Problem 1P
The electric field phasor is
Explanation of Solution
Calculation:
Write the standard relation between electric field and magnetic field intensity.
Here,
Write the standard expression for the intrinsic impedance of the medium.
Here,
Write the standard expression for the electrical permittivity of any medium as,
Here,
Substitute
The permeability of the given non magnetic medium is,
Substitute
Substitute
Simplify the above expression.
The conversion from
So, the conversion from
Substitute
Conclusion:
Therefore, the electric field phasor is
Want to see more full solutions like this?
Chapter 7 Solutions
Fundamentals of Applied Electromagnetics (7th Edition)
- 2-4) Similar to Lathi & Ding prob. 2.9-4 (a) For signal g(t)=t, find the exponential Fourier series to represent g(t) over the interval(0, 1). (b) Sketch the original signal g(t) and the everlasting signal g'(t) represented by the same Fourier series. (c) Verify Parseval's theorem [eq. (2.103b)] for g'(t), given that: = n 1 6arrow_forward8.24 In the circuit of Fig. P8.24, is(t) = 0.2sin105t A,R = 20 W, L = 0.1 mH, and C = 2 μF. Show that the sum ofthe complex powers for the three passive elements is equal to thecomplex power of the source.arrow_forward3. VEB (on) 0.7 V, VEC (sat) = 0.2 V, and ẞ = 150. RB = 50 kQ, Rc = 2 kQ, and Vcc = 5 V. a) Find the range of V₁ for the cut-off. Forward active, and saturation regions. (20 points) b) Draw the voltage transfer characteristic (VTC) graph. (10 points) Vcc VEB V₁ RB www 。 Vo Rc Figure 3arrow_forward
- 2-1) Lathi & Ding prob. 2.5-2 For the signals y(t) and x(t) shown below, find the component of the form y(t) contained in x(t). In other words, find the optimum value of c in the approximation x(t) = cy(t) so that the error signal energy is minimum. Also compute the error signal energy. y(t) x(t) 0 1 0 1arrow_forward1. Is1 = 2ls2 = 4 × 10-16 A, B₁ = ẞ2 = 100, and R₁ = 5 kQ. Find the VB such that lx = 1 mA. (30 points) R1 ww Q2 + VB Figure 1arrow_forward2-2) Lathi & Ding prob. 2.6-1 2.6-1 Find the correlation coefficient p between of signal x(t) and each of the four pulses g1(1), 82(1), 83(1), and g4(f) shown in Fig. P2.6-1. To provide maximum margin against the noise along the transmission path, which pair of pulses would you select for a binary communication? Figure P.2.6-1 x(f) (a) 8(1) (b) 82(1) (c) 1 1 sin 2πt sin 4πt -sin 2 0 0.707 83(1) 0 1 (d) 0 M P 0.707 84(1) (e) 0 0.5 -0.707arrow_forward
- 2. Determine the operation point and the small-signal model of Q₁ for each of the circuits shown in Fig. 2. Assume Is = 8 × 10-16 A, B = 100 and VA = ∞. a) 20 points b) 20 points 0.8 V RC 50 Ω + Vcc = 2.5 V 4A" Figure 2-a Rc1kQ + Vcc = 2.5 V Figure 2-barrow_forwardPlease explain in detail how to solve this question. Show detailed steps in terms of calculation and theory. thank youarrow_forwardPls show neat and whole solutionarrow_forward
- Pls show neat and whole solutionarrow_forwardPlease explain in detail how to solve this question. Include steps with calculations and theory. thank youarrow_forwardFinding crystallographic direction Z pt. 2 head pt. 1: ៩ Example 2: pt. 1 x₁ = a, y₁ = b/2, z₁ = 0 pt. 2 x2=-a, y₂ = b, Z₂ = c -a-a b-b/2 c-0 a b c tail => -2, 1/2, 1 Multiplying by 2 to eliminate the fraction -4,1,2 => [412] where the overbar represents a negative index families of directionsarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,