Concept explainers
The magnetic field of a wave propagating through a certain nonmagnetic material is given by
Find the following:
- (a) The direction of wave propagation.
- (b) The phase velocity.
- (c) The wavelength in the material.
- (d) The relative permittivity of the material.
- (e) The electric field phasor.
(a)
The direction of wave propagation for the given condition.
Answer to Problem 1P
The direction of wave propagation for the given condition is
Explanation of Solution
Given data:
The magnetic field intensity of the wave is
Calculation:
Write the standard expression for the magnetic field phasor of TEM wave propagating in the
Here,
In the above equation positive sign is used when the wave is travelling in the
In the given magnetic field negative sign is used so the direction of wave propagation is along the
Conclusion:
Therefore, the direction of wave propagation for the given condition is
(b)
The phase velocity for the given condition.
Answer to Problem 1P
The phase velocity for the given condition is
Explanation of Solution
Calculation:
Write the standard relation of phase velocity, wave number and angular frequency of uniform plane wave.
Here,
Compare the given magnetic field and equation (1) to calculate the value of
Substitute
Conclusion:
Therefore, the phase velocity for the given condition is
(c)
The wavelength in the material.
Answer to Problem 1P
The wavelength in the material is
Explanation of Solution
Calculation:
Write the standard relation between wavelength and wave number of plane wave.
Here,
Substitute
Conclusion:
Therefore, the wavelength in the material is
(d)
The relative permittivity of the medium.
Answer to Problem 1P
The relative permittivity
Explanation of Solution
Calculation:
Write the standard relation between relative permittivity and speed of light and phase velocity.
Here,
Substitute
Conclusion:
Therefore, the relative permittivity
(e)
The electric field phasor.
Answer to Problem 1P
The electric field phasor is
Explanation of Solution
Calculation:
Write the standard relation between electric field and magnetic field intensity.
Here,
Write the standard expression for the intrinsic impedance of the medium.
Here,
Write the standard expression for the electrical permittivity of any medium as,
Here,
Substitute
The permeability of the given non magnetic medium is,
Substitute
Substitute
Simplify the above expression.
The conversion from
So, the conversion from
Substitute
Conclusion:
Therefore, the electric field phasor is
Want to see more full solutions like this?
Chapter 7 Solutions
Fundamentals of Applied Electromagnetics (7th Edition)
- The plane wave with a frequency of 3 GHz has a relative dielectric constant of 2.5, a loss tangent of 0.05, and travels in a non-magnetic medium. What is the impedance value of the wave? 238 Ohm 377 Ohm 120 Ohm 150 Ohmarrow_forward(t) = Fejtáx with is The wave parameters M₂ = 4.5 μ0₁ E₂ = 1.280. Calculate the magnetic field phasor and time-Overased pgniting vector for this wave. with electric field phasor propapating in a perfect dielectric medium 4) you are given a plane wavearrow_forwardFor a non-magnetic material having e, = 2.25, o = 10-4 Find the intrinsic impedance for a wave having a frequency of 2.5 MHz. O 25.4490.09° 0 O 254490.09° 25.449.09° 0 O 254.049.09° 0,arrow_forward
- Two harmonic waves are generated on the same rope, each wave has an amplitude of 3.0 cm and 2.0 cm respectively as shown in the figure. Nevertheless, the second wave has a lag of π / 2 in relation to the first. Knowing that both have the same frequency of 5.0 Hz, and the length wave of the first wave is 0.4 m: (a) Calculate the wave number and angular frequency of each of the waves; ps: for the two waves! (b) Express the wave function of each of the harmonic oscillations propagated in the string;arrow_forwardProblem 4. What direction is a wave of the form cos (ot + kz) traveling? What is the phase and group velocity of this wave?arrow_forwardThe magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 1082π1082πHz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the equation of the instantaneous Electric field. Assume the initial phase is 0.arrow_forward
- An electromagnetic wave of the form E = 2 Sin(kx – wt)î B Cos(kx – wt)j travels though a media with & = 2 l =1 at 9Hz. What is the waves velocity?arrow_forwardIn the figure: period of wave = 0.40s; t=0s (wave travels right) 1. What is the frequency, phase constant, amplitude, velocity, and wavelength? 2. What is the angular frequency and wavenumber of this wave?arrow_forwardH5arrow_forward
- The magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 0 Hz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the relative permittivity of the material. Assume the initial phase is 0. Select one: O a. 2.25 O b. 1.5 O C. 1.2 O d. 2.9 O e. 1 O f. 0arrow_forwardThe electric field of a plane wave in a nonmagnetic medium is E = 50 sin (10*t + 2z)a, V/m Find magnetic filed of the plane Harrow_forwardQ1/The complex magnetic field of a uniform plane wave is given by. 108 Hm (ax-jaz)ely 120m b) Find the polarization of the wave b) State the direction of rotation. Justify your answer.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,