Concept explainers
Briefly define each of the following:
- a. Distribution of sample
means - b. Central limit theorem
- c.
Expected value of M - d. Standard error of M
a.
To Define: The distribution of sample means.
Answer to Problem 1P
Distribution of sample means consists of means of all possible samples of fixed size that can be selected from a given population.
Explanation of Solution
Since, it is quite difficult to study the complete population, so sample of fixed size are selected which are representative of population. If all the possible samples of fixed size are listed, they follow certain distributions. Similarly, distribution of sample means consists of sample means of all the possible samples of fixed size that can be selected from a given population.
Conclusion:
Distribution of sample means consists of sample means of all the possible samples of fixed size that can be selected from a given population.
b.
To Define: Central limit theorem.
Answer to Problem 1P
According to central limit theorem, for any population with mean
Explanation of Solution
Since, sample means are the representatives of the population means, so as sample size increases, most of the samples piled up closer to the population mean. Therefore, as sample size increases sample means tends to population mean and standard error of sample means decreases. So, this intuition is stated in central limit theorem as:
For any population with mean
Conclusion:
According to central limit theorem, for any population with mean
c.
To Define: Expected value of M.
Answer to Problem 1P
The expected value of M is the average of means for all the possible samples of the fixed size which can be selected from given population.
Explanation of Solution
The sample means are the representative of the population mean from which samples have been drawn. The average of means for all possible samples of fixed size takes all population units into the consideration and equals to population mean. Therefore, the expected value of M is the average of means for all the possible samples of the fixed size which can be selected from given population and is equals to the population mean.
Conclusion:
The expected value of M is the average of means for all the possible samples of the fixed size which can be selected from given population.
d.
To Define: Standard error of M.
Answer to Problem 1P
Standard error of M measures the average distance of M from the population mean and is equals to
Explanation of Solution
Since, distribution of sample means consists of means for all the possible samples of fixed size n from the given population. So, standard error of M measures the average distance of M from the population mean. In other words, standard error of M is the standard deviation of the distribution of the sample means and is equals to
Conclusion:
Standard error of M is the standard deviation of the distribution of the sample means and is equals to
Want to see more full solutions like this?
Chapter 7 Solutions
Mindtap Psychology, 2 Terms (12 Months) Printed Access Card For Gravetter/wallnau/forzano’s Essentials Of Statistics For The Behavioral Sciences, 9th
- 310015 K Question 9, 5.2.28-T Part 1 of 4 HW Score: 85.96%, 49 of 57 points Points: 1 Save of 6 Based on a poll, among adults who regret getting tattoos, 28% say that they were too young when they got their tattoos. Assume that six adults who regret getting tattoos are randomly selected, and find the indicated probability. Complete parts (a) through (d) below. a. Find the probability that none of the selected adults say that they were too young to get tattoos. 0.0520 (Round to four decimal places as needed.) Clear all Final check Feb 7 12:47 US Oarrow_forwardhow could the bar graph have been organized differently to make it easier to compare opinion changes within political partiesarrow_forwardDraw a picture of a normal distribution with mean 70 and standard deviation 5.arrow_forward
- What do you guess are the standard deviations of the two distributions in the previous example problem?arrow_forwardPlease answer the questionsarrow_forward30. An individual who has automobile insurance from a certain company is randomly selected. Let Y be the num- ber of moving violations for which the individual was cited during the last 3 years. The pmf of Y isy | 1 2 4 8 16p(y) | .05 .10 .35 .40 .10 a.Compute E(Y).b. Suppose an individual with Y violations incurs a surcharge of $100Y^2. Calculate the expected amount of the surcharge.arrow_forward
- 24. An insurance company offers its policyholders a num- ber of different premium payment options. For a ran- domly selected policyholder, let X = the number of months between successive payments. The cdf of X is as follows: F(x)=0.00 : x < 10.30 : 1≤x<30.40 : 3≤ x < 40.45 : 4≤ x <60.60 : 6≤ x < 121.00 : 12≤ x a. What is the pmf of X?b. Using just the cdf, compute P(3≤ X ≤6) and P(4≤ X).arrow_forward59. At a certain gas station, 40% of the customers use regular gas (A1), 35% use plus gas (A2), and 25% use premium (A3). Of those customers using regular gas, only 30% fill their tanks (event B). Of those customers using plus, 60% fill their tanks, whereas of those using premium, 50% fill their tanks.a. What is the probability that the next customer will request plus gas and fill the tank (A2 B)?b. What is the probability that the next customer fills the tank?c. If the next customer fills the tank, what is the probability that regular gas is requested? Plus? Premium?arrow_forward38. Possible values of X, the number of components in a system submitted for repair that must be replaced, are 1, 2, 3, and 4 with corresponding probabilities .15, .35, .35, and .15, respectively. a. Calculate E(X) and then E(5 - X).b. Would the repair facility be better off charging a flat fee of $75 or else the amount $[150/(5 - X)]? [Note: It is not generally true that E(c/Y) = c/E(Y).]arrow_forward
- 74. The proportions of blood phenotypes in the U.S. popula- tion are as follows:A B AB O .40 .11 .04 .45 Assuming that the phenotypes of two randomly selected individuals are independent of one another, what is the probability that both phenotypes are O? What is the probability that the phenotypes of two randomly selected individuals match?arrow_forward53. A certain shop repairs both audio and video compo- nents. Let A denote the event that the next component brought in for repair is an audio component, and let B be the event that the next component is a compact disc player (so the event B is contained in A). Suppose that P(A) = .6 and P(B) = .05. What is P(BA)?arrow_forward26. A certain system can experience three different types of defects. Let A;(i = 1,2,3) denote the event that the sys- tem has a defect of type i. Suppose thatP(A1) = .12 P(A) = .07 P(A) = .05P(A, U A2) = .13P(A, U A3) = .14P(A2 U A3) = .10P(A, A2 A3) = .011Rshelfa. What is the probability that the system does not havea type 1 defect?b. What is the probability that the system has both type 1 and type 2 defects?c. What is the probability that the system has both type 1 and type 2 defects but not a type 3 defect? d. What is the probability that the system has at most two of these defects?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill