![GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9780134566030/9780134566030_largeCoverImage.gif)
Calculate the quantity of heat, in kilojoules, (a) required to raise the temperature of 9.25 L of water from 22.0 to 29.4 °C; (b) associated with a 33.5°C decrease in temperature in a 5.85 kg aluminum bar (specific heat capacity of aluminum
![Check Mark](/static/check-mark.png)
(a)
Interpretation:
The heat required to raise the temperature of 9.25 L water from 22 0C to 29.4 0C is to be calculated.
Concept introduction:
The amount of heat required in order to increase the temperature by one degree Celsius of unit mass of a substance is said to be the specific heat.
The heat required to change the temperature of a substance is related to heat capacity of the substance by the expression as:
Answer to Problem 1E
The heat required to raise the temperature of 9.25 L water from 22 0C to 29.4 0C is 286.121 kJ.
Explanation of Solution
The amount of heat required to raise the temperature of a substance is given as:
The mass of water can be calculated using the given volume of water and the density of water.
The change in temperature = (29.4 - 22.0) 0C = 7.4 0C
Specific heat of water = c = 4.18 J/g0C
Substituting the above values in equation (1) to calculate the value of Q:
Therefore, the heat required to raise the temperature of 9.25 L of water is 286.121 kJ.
![Check Mark](/static/check-mark.png)
(b)
Interpretation:
The quantity of heat associated with a 33.5 0C decrease in temperature in a 5.85 kg aluminum bar is to be calculated.
Concept introduction:
The amount of heat required in order to increase the temperature by one degree Celsius of unit mass of a substance is said to be the specific heat.
The heat required to change the temperature of a substance is related to heat capacity of the substance by the expression as:
Answer to Problem 1E
The quantity of heat required to decrease the temperature of aluminum bar by 33.5 0C is 176.97 kJ.
Explanation of Solution
The amount of heat required to change the temperature of a substance is given as:
The mass of aluminum is given to be
The decrease in temperature = 33.5 0C
Specific heat of aluminum = c = 0.903 J/g0C
Substituting the above values in equation (1) to calculate the value of Q:
Therefore, the heat required to decrease the temperature of 5.85 kg aluminum by 33.5 0C is 176.97 kJ.
Want to see more full solutions like this?
Chapter 7 Solutions
GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology: An Introduction
Campbell Biology (11th Edition)
Chemistry: The Central Science (14th Edition)
Introductory Chemistry (6th Edition)
- Don't used hand raiting don't used Ai solutionarrow_forwardHomework: Atomic Structure This homework is due at the beginning of class next lecture period and is worth 6 points. Please place the number of protons and neutrons in the nucleus and then put the number of electrons in the correct shell. Also give the correct atomic mass. Also, state if the atom is an ion (cation or anion). H* 1. Number of protons Number of electrons Number of neutrons Atomic mass 2. 26 13AI +++ Number of protons Number of neutrons Number of electrons Atomic massarrow_forwardDon't used hand raitingarrow_forward
- I need help working this problem out step by step, I was trying to use my example from the txt book but all I know how to do is set it up. I need to be shown step by step as I am a visual learner. Please help me.arrow_forwardDon't used hand raitingarrow_forwardDon't used Ai solution and don't used hand raitingarrow_forward
- & Calculate the molar enthalpy of combustion (A combH) of 1.80 g of pyruvic acid (CH3COCOOH; 88.1 g mol-1) at 37 °C when they are combusted in a calorimeter at constant volume with a calorimeter constant = 1.62 kJ °C-1 and the temperature rose by 1.55 °C. Given: R = 8.314 J mol −1 °C-1 and the combustion reaction: AN C3H4O3 + 2.502(g) → 3CO2(g) + 2H2O(l)arrow_forwardAn unknown salt, AB, has the following precipitation reaction:A+(aq) + B-(aq) ⇌ AB(s) the K value for this reaction is 4.50 x10-6. Draw a model that represents what will happen when 1.00 L each of 1.00 M solution of A+(aq) and 1.00M solution of B-(aq) are combined.arrow_forward5. a) Use the rules in Example 4.4 (p. 99) and calculate sizes of octahedral and tetrahedral cavities in titanium and in zirconium. Use values for atomic radii given in Fig. 9.1 (p.291). (3 points) b) Consider the formation of carbides (MC) of these metals. Which metal is able to accommodate carbon atoms better, and which cavities (octahedral or tetrahedral) would be better suited to accommodate C atoms into metal's lattice? (4 points)arrow_forward
- 2. Read paragraph 3.4 in your textbook ("Chiral Molecules"), and explain if Cobalt(ethylenediamine) 33+ shown in previous problem is a chiral species. If yes, draw projections of both enantiomers as mirror images, analogous to mirror projections of hands (below). Mirror (4 points)arrow_forward3. Borane (BH3) belongs to D3h point group. Consider the vibrational (stretching) modes possible for B-H bonds under D3h symmetry. Using the methods we used in class, construct the reducible representation I, and break it down into irreducible representations using the character table provided. Sketch those modes, indicate whether they are IR-active. (6 points) D3h E 2C3 3C2 σh 283 30% A₁' 1 1 1 1 1 1 x² + y², z² 1 -1 1 1 -1 R₂ E' 2 0 2 0 (x, y) (x² - y², xy) " A₁" 1 1 -1 A2" 1 -1 -1 1 Z E" 2 -1 0 -2 1 0 (Ry, Ry) (xz, yz)arrow_forward1. List all the symmetry elements, and assign the compounds to proper point groups: a) HCIBrC-BrCIH Cl Br H (2 points) H Br b) Pentacarbonylmanganese(I)bromide Br OEC-Mn-CEO 00- c) Phenazine (aromatic molecule, with delocalized bonding) 1 d) Cobalt(ethylenediamine)33+ (just the cation) 3+ H₂N H₂ .NH2 (CI)3 NH2 H2 H₂N. (2 points) (2 points) (2 points)arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)