(a)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
(a)
Explanation of Solution
Let us consider the orbital filling method of Sodium (Na+) ions.
Given the Sodium atom has loss of one electron from outermost shells.
When (
Hence, the electronic configuration of Sodium ions (
(b)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
(b)
Explanation of Solution
Let us consider the orbital filling method of Aluminium ions (
The single Aluminium toms having (13) electrons in (s, p, d) orbital shells and its
Hence we can write oxidation reaction has shown below.
When (Al) was oxidized to (Al3+) ions, it lose three electrons from outermost (3s and 3p) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of Aluminium (III) ions (
(c)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
(c)
Explanation of Solution
Let us consider the orbital filling method of Germanium ions (
The single Ge atoms having (32) electrons in (s, p) orbital shells and its atomic number (Z=32). Moreover the (Ge) atoms has loss of two electrons in outermost (3p, 3s) shells.
Hence we can write gains of electron (Oxidation method) process are presented below.
When (Ge) was oxidized to (Ge2+) ions, it lost for two electrons in outermost (4s and 4p) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of germanium ions (
(d)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
(d)
Explanation of Solution
Let us consider the orbital filling method of Florine ions (F-) ions.
The single chlorine atoms having (9) electrons in (s, p) orbital shells and its atomic number (Z=9). Moreover the (F) atom has gain of one electron in outermost (2p) shells.
Hence we can write gains of electron (Reduction method) process are presented below.
When (F) was gain to (F-) ions, it gain one electron to outermost (2p) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of fluorine ions (
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
- What neutral atoms are isoelectronic with the following ions? (a) Pb4+ (b) Br (c) S2 (d) Ni3+arrow_forwardWhat is the electron configuration of the Ba3+ ion? Suggest a reason why this ion is not normally found in nature.arrow_forwardIn the table below, I1 – I6 represent first 6 ionization energies of a certain element. All units are kJ/mol. I1 I2 I3 I4 I5 I6 738 1450 7730 10500 13600 18000 This element is in the 3rd row of the periodic table, the row starting with Na. Identify the element, and explain your reasoning, based on the data in the above table.arrow_forward
- Identify each statement as true or false: (a) Cations are largerthan their corresponding neutral atoms. (b) Li+ is smallerthan Li. (c) Cl- is bigger than I-.arrow_forwardClassify each of the following elements as a main-group or transition element. Also,specify whether they are metals, metalloids, or nonmetals: Na, Re, S, I, Kr, Mg, U, Si, B, Al, As, H.arrow_forward2.(a) Write the full electron configuration for each of Ge and Ge3-2.(b) Write the noble gas configuration, and valence configuration of Ge 2.(c) Write the orbital diagram for the Ge3-2.(d) For the unpaired electron in the orbital diagram for the Ge3-ion, give its four quantum numbersn,l,ml,ms 2.(e) Is Ge3+ diamagnetic or paramagnetic?arrow_forward
- Q1. This question is about atomic structure. (a) Write the full electron configuration for each of the following species. CH Fe2+ (b) Write an equation, including state symbols, to represent the process that occurs when the third ionisation energy of manganese is measured. (c) State which of the elements magnesium and aluminium has the lower first ionisation energy Explain your answer. (d) A sample of nickel was analysed in a time of flight (TOF) mass spectrometer. The sample was ionised by electron impact ionisation. The spectrum produced showed three peaks with abundances as set out in the table. m/z Abundance /% 58 61.0 60 29.1 61 9.9 Give the symbol, including mass number, of the ion that would reach the detector first in the sample. Calculate the relative atomic mass of the nickel in the sample. Give your answer to one decimal place. Page 2 of 12 Symbol of ion Relative atomic massarrow_forwardWrite the electron configuration and orbital diagram for each ion and determine whether each is diamagnetic or paramagnetic.(a) Al3 + (b) S2 - (c) Fe3 +arrow_forward(c) Silicon (Si) is the most common chemical element in today's semiconductor industry. It has an atomic number of 14 and belongs to the Group IV (4) of the periodic table with its most common isotope being Si-29. (i) (ii) (iii) Explain what an isotope is. How many protons and how many neutrons are in the nucleus of this Silicon isotope? What is the electron configuration of Si?arrow_forward
- (a) Rank elements: Na, Mg, Al, and K, in increasing order of: (i) atomic size; (ii) ionization energy, and (iii) reactivity. (b) Explain why atomic size decreases from left to right, but increases from top to bottom; (c) Explain why ionization energy increases from left to right, but decreases from top to bottom; (d) Explain why the reactivity of alkali metals (Group-1) increases from top to bottom, where as the reactivity of halogen (Group-17) decreases from top to bottom.arrow_forwardWrite the electron configuration for each element.(a) Cl (b) Si (c) Sr (d) Oarrow_forward3. Classify each of the following elements as a noble gas, a representative element, a transition element, or an inner-transition element. Also state whether the element is paramagnetic or diamagnetic: (a) potassium; (b) phosphorous; (c) promethium; (d) platinum; (e) krypton.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co