Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 17P
To determine
The total energy used by all cars in United States in a year.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A food calorie is a unit of energy such that 1 food calorie = 4184 J. This means that a person that burns energy with a power of 4184 W would burn one food calorie every second. A more typical human power rate is 90 W (called the basal metabolic rate). At this rate, how many calories are burned per second (or alternatively, how many seconds does it take to burn 1 calorie)?
When it rains, water vapor in the air condenses into liquid water, and energy is released. (a) How much energy is released when 0.0356
m (1.40 inch) of rain falls over an area of 2.59×106 m² (one square mile)? (b) If the average energy needed to heat one home for a year is
1.50x10¹1 J, how many homes could be heated for a year with the energy determined in part (a)?
(a) Number i
(b) Number 1
Units
Units
Consider the thermodynamic process, A->B->C->A shown above. The heat absorbed during A->B is 591J. If the change in internal energy during B->C is 4146J, What is the change in internal energy in SI units during C->A? Express only the number of your answer with 4 significant figures.
Chapter 7 Solutions
Physics for Scientists and Engineers
Ch. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10P
Ch. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - Prob. 73PCh. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - Prob. 79PCh. 7 - Prob. 80PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 83PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 87PCh. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Prob. 103PCh. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forwardIn 2011, artist Hans-Peter Feldmann covered the walls of a gallery at the New York Guggenheim Museum with 100,000 one-dollar bills (Fig. P1.48). Approximately how much would it cost you to wallpaper your room in one-dollar bills, assuming the bills do not overlap? Consider the cost of the bills alone, not other supplies or labor costs. FIGURE P1.48arrow_forwardAn energetic athlete can use up all the energy from a diet of 4000 Cal/day. If he were to use up this energy at a steady rate, what is the ratio of the rate of energy use compared to that of a 100 W bulb? (The power of 100 W is the rate at which the bulb converts electrical energy to heat and the energy of visible light.)arrow_forward
- Suppose that the average U.S. household uses 14600 kWh14600 kWh (kilowatt‑hours) of energy in a year. If the average rate of energy consumed by the house was instead diverted to lift a 1470 kg1470 kg car 11.3 m11.3 m into the air, how long would it take? Using the same rate of energy consumption, how long would it take to lift a loaded Boeing 747 airplane, with a mass of 4.10×105 kg4.10×105 kg , to a cruising altitude of 8.92 km8.92 km ?arrow_forwardA person's basal metabolic rate (BMR) is the rate at which energy is expended while resting in a neutrally temperate environment. A typical BMR is 7.22 x 10° J/day. Convert this BMR to units of watts and kilocalories (or Calories) per hour. HINT (a) watts W (b) kilocalories per hour kcal/h (c) Suppose a 1.00 kg object's gravitation potential energy is increased at a rate equal to this typical BMR. Find the rate of change of the object's height in m/s. (The acceleration of gravity is g = 9.80 m/s2.) m/sarrow_forwardRubbing your hands together warms them by converting work into thermal energy. If a woman rubs her hands back and forth for a total of 20 rubs, at a distance of 7.50 cm per rub, and with an average frictional force of 40.0 N, what is the temperature increase? The mass of tissues warmed is only 0.100 kg mostly in the palms and fingers. Your answer must have three significant figures and the temperature change in centigrade.arrow_forward
- The human body, while at rest, produces heat energy at a rate of about 103 W. How much sweat (in g) must evaporate every minute from their skin to carry away this excess energy? (Note: according to your book, the latent heat of vaporization of water at body temperature is 2.43 * 106 J/kg).arrow_forwardCalculate how many kg an 80 kg person who replaces 30 minutes/day will lose in a yearin front of the TV for 30 minutes of brisk walking. Use the following data: Expensecalories during the walk (5 km/h) = 0.063 kcal/kg/minute. Calorie expenditure watching TV = 0.028kcal/kg/min. 1 kg of weight lost is equivalent to about 7000 kcal.arrow_forwardCompute the energy consumption in units of joules per year, gigawatts (GW), and watts per person as (a) fuel, (b) food, and (c) solar radiation for a country of population density 20 person/km2, an area of 1 million km2, and a fuel energy consumption rate of 250 GJ per person per year. Solar radiation reaching the ground is approximately 150 W/m2. The average person consumes food containing 2000 “calories” per day (1 calorie = 4182 J).arrow_forward
- A student evaluates a weight loss program by calculating the number of times she would need to climb a 10.0 m high flight of steps in order to lose one pound (0.45 kg) of fat. Metabolizing 1.00 kg of fat can release 3.77 x 10'J of chemical energy and the body can convert about 21.2% of this into mechanical energy (the rest goes into internal energy.) HINT (a) How much mechanical energy (in J) can the body produce from 0.450 kg of fat? (b) How many trips up the flight of steps are required for the 52.0 kg student to lose 0.450 kg of fat? Ignore the relatively small amount of energy required to return down the stairs. trips Need Help? Read It Watch Itarrow_forwardA student evaluates a weight loss program by calculating the number of times she would need to climb a 13.0 m high flight of steps in order to lose one pound (0.45 kg) of fat. Metabolizing 1.00 kg of fat can release 3.77 x 10'J of chemical energy and the body can convert about 21.8% of this into mechanical energy (the rest goes into internal energy.) HINT (a) How much mechanical energy (in J) can the body produce from 0.450 kg of fat? (b) How many trips up the flight of steps are required for the 70.0 kg student to lose 0.450 kg of fat? Ignore the relatively small amount of energy required to return down the stairs. tripsarrow_forwardOnly about 20% of the Calories we consume are used for mechanical work (i.e., moving the body around). Estimate how many granola bars (150 Cal per bar) an 85 kg person will burn if they climb vertically up theside of the Empire State Building. height of Empire State Building, h = 443 m unit conversion: 1 Cal = 4184 Joulesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY