Concept explainers
(a)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
The given reaction is as follows:
In this unbalanced equation number of Na atoms in reactants side is two and only one in the product side. Give coefficient 2 to NaCl. Then number of Cl atoms in products side becomes two, and there are two atoms in reactants side also. Other atoms present in the equation are already balanced. So, the balanced equation will be as follows:
(b)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
The equation is already balanced. Number of Zn atoms, H atoms and O atoms are same on both sides of the reaction arrow that is reactant and product sides.
(c)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
In the unbalanced equation, number of Na atoms in reactants side is one and in products side its three. So, give coefficient 3 to NaOH. The number of H atoms in the reactants side becomes six. Give coefficient 3 to H2 O to balance the number of H atoms. Thus, the balanced
(d)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
In the unbalanced equation, number of aluminum in reactants side is one but two in products side thus, give coefficient 2 to Al. Now, number of Mn in reactants side is two, but one in products side. Give coefficient 2 to Mn to balance the number of Mn atoms. The number of O is already balanced. Thus, the balanced equation is,
(e)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
In the unbalanced equation, number of C in reactants side is seven but one in products side. Give coefficient 7 to CO2. Number of H atoms in reactants side is six, but only two in the products side thus, give coefficient 3 to H2 O. The number of O atoms in the products side becomes 17, but there are only four in the reactants side thus, give coefficient 15/2 to before O2. But one cannot keep fractions as a coefficient in a balanced equation thus, multiply the whole equation by two so that the denominator of 15/2 is cancelled off. Thus, the balanced equation will be:
(f)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
In the unbalanced equation, number of C in reactants side is six but one in products side. Give coefficient 6 to CO2. Number of H atoms in reactants side is 14, but only 2 atoms in the products side. Thus, give coefficient 7 to H2 O, the number of O in the products side becomes 19, but there are only two in the reactants side. Give coefficient 19/2 to O2. But one cannot keep fractions as a coefficient in a balanced equation. Therefore, multiply the whole equation by 2 so that the denominator of 19/2 is cancelled off. So, the balanced equation is,
(g)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
In the unbalanced equation, number of C in reactants side is three but one in products side. Give coefficient 3 to CO2. Number of H atoms in reactants side is fourteen, but only two in the products side. Thus, give coefficient 4 to H2 O. But then the number of O atoms in the products side becomes 10, but there are only 3 atoms in the reactants side. Thus, give coefficient 9/2 to O2. But one cannot keep fractions as a coefficient in a balanced equation. Therefore, one multiply the whole equation by 2 so that the denominator of 9/2 is cancelled off. Thus, the balanced equation is,
(h)
Interpretation:
Given chemical equation should be balanced.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
Answer to Problem 17CR
Explanation of Solution
In the unbalanced equation, number of H atoms in the reactants side is 1 but in the products side, it is 2. Thus, give coefficient 2 to HClO4. Then all the other atoms get balanced. Mg is already balanced. Thus, the balanced equation will be:
Want to see more full solutions like this?
Chapter 7 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forward
- Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forward
- NGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardIn three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning