Assume that we are in another universe with different physical laws. Electrons in this universe are described by, four quantum numbers with meanings similar to those we use. We will call these quantum numbers p, q, r, and s. The rules for these quantum numbers are as follows:
P = 1, 2, 3, 4, 5, ….
q takes on positive odd integers and q ≤ p
r takes on all even integer values from −q to +q. (Zero is considered an even number.)
a. Sketch what the first four periods of lhe periodic table will look like in this universe.
b. What are the
c. Give an example, using elements in the first four rows, of ionic compounds with the formulas XY, XY2, X2Y, XY3, and X2Y3.
d. How many electrons can have p = 4, q = 3?
e. How many electrons can have p = 3, q = 0, r = 0?
f. How many electrons can have p = 6?
(a)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The sketch of the first four periods of the periodic table look like in the assumed universe.
Explanation of Solution
Explanation
Given
The given rules for four quantum numbers are as follows,
The sketch of the first four periods of the periodic table based on the given rules is drawn as,
The principle quantum number is one of the characteristic of the atomic orbitals. Here, it is denoted by the symbol
The meaning of the given four quantum numbers is similar with the actual quantum numbers. Therefore, the orbital representation is as follows,
(b)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The atomic number of the first four least reactive elements.
Answer to Problem 171CP
Answer
The atomic number of the first four least reactive elements are
Explanation of Solution
Explanation
The least reactive elements are those elements which contain completely filled subshell. Therefore, the atomic number of the elements which are least reactive is given as,
Here, all the atomic orbitals have the completely filled subshell.
(c)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The examples of the ionic compounds of the first four rows with the formula
Answer to Problem 171CP
Answer
The examples of the ionic compounds of the first four rows with the formula
Explanation of Solution
Explanation
Ionic compounds are those compounds which are combined by an ionic interaction. In these compounds the donation and acceptance of electrons occur. The overall charge on such compounds is to be neutralized. For example the compound
This is because both the elements have the charges
Therefore, combinations based on the number of electrons are given as,
(d)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 171CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
(e)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 171CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
(f)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 171CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
According to the calculated
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Chemistry, 9th, Loose-Leaf + OWLv2 24-Months Printed Access Card
- Describe the structural differences between iso- and heteropolyacids.arrow_forwardWhat is the pH of the Tris buffer after the addition of 10 mL of 0.01M NaOH? How would I calculate this?arrow_forwardWhy do isopolianions form polymeric species with a defined molecular weight? What does it depend on?arrow_forward
- What are isopolianions? Describe the structural unit of isopolianions.arrow_forwardJustify the polymerization of vanadates VO43-, as a function of concentration and pH.arrow_forwardWhat is the preparation of 500 mL of 100mM MOPS buffer (pH=7.5) starting with 1 M MOPS and 1 M NaOH? How would I calculate the math?arrow_forward
- Indicate the correct option.a) Isopolianions are formed around metallic atoms in a low oxidation state.b) Non-metals such as N, S, C, Cl, ... give rise to polyacids (oxygenated).c) Both are incorrect.arrow_forward14. Which one of the compounds below is the major organic product obtained from the following series of reactions? Br OH OH CH3O™ Na+ H*, H₂O SN2 HO OH A B C D 0 Earrow_forwardWavelength (nm) I'm not sure what equation I can come up with other than the one generated with my graph. Can you please show me the calculations that were used to find this equation? Give an equation that relates energy to wavelength. Explain how you arrived at your equation. Wavelength Energy (kJ/mol) (nm) 350 341.8 420 284.8 470 254.5 530 225.7 580 206.3 620 192.9 700 170.9 750 159.5 Energy vs. Wavelength (Graph 1) 400 350 y=-0.4367x+470.82 300 250 200 150 100 50 O 0 100 200 300 400 500 600 700 800 Energy (kJ/mol)arrow_forward
- 5. Draw molecular orbital diagrams for superoxide (O2¯), and peroxide (O2²-). A good starting point would be MO diagram for O2 given in your textbook. Then: a) calculate bond orders in superoxide and in peroxide; indicate which species would have a stronger oxygen-oxygen bond; b) indicate which species would be a radical. (4 points)arrow_forward16. Which one of the compunds below is the final product of the reaction sequence shown here? عملاء .OH Br. (CH3)2CH-C=C H+,H,O 2 mol H2, Pt A OH B OH D OH E OH C OHarrow_forwardIndicate whether any of the two options is correct.a) The most common coordination structure for isopolianions is the prismb) Heteropolianions incorporate alkaline cations into their structuresarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning