Assume that we are in another universe with different physical laws. Electrons in this universe are described by, four quantum numbers with meanings similar to those we use. We will call these quantum numbers p, q, r, and s. The rules for these quantum numbers are as follows:
P = 1, 2, 3, 4, 5, ….
q takes on positive odd integers and q ≤ p
r takes on all even integer values from −q to +q. (Zero is considered an even number.)
a. Sketch what the first four periods of lhe periodic table will look like in this universe.
b. What are the
c. Give an example, using elements in the first four rows, of ionic compounds with the formulas XY, XY2, X2Y, XY3, and X2Y3.
d. How many electrons can have p = 4, q = 3?
e. How many electrons can have p = 3, q = 0, r = 0?
f. How many electrons can have p = 6?
(a)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The sketch of the first four periods of the periodic table look like in the assumed universe.
Explanation of Solution
Explanation
Given
The given rules for four quantum numbers are as follows,
The sketch of the first four periods of the periodic table based on the given rules is drawn as,
The principle quantum number is one of the characteristic of the atomic orbitals. Here, it is denoted by the symbol
The meaning of the given four quantum numbers is similar with the actual quantum numbers. Therefore, the orbital representation is as follows,
(b)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The atomic number of the first four least reactive elements.
Answer to Problem 171CP
Answer
The atomic number of the first four least reactive elements are
Explanation of Solution
Explanation
The least reactive elements are those elements which contain completely filled subshell. Therefore, the atomic number of the elements which are least reactive is given as,
Here, all the atomic orbitals have the completely filled subshell.
(c)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The examples of the ionic compounds of the first four rows with the formula
Answer to Problem 171CP
Answer
The examples of the ionic compounds of the first four rows with the formula
Explanation of Solution
Explanation
Ionic compounds are those compounds which are combined by an ionic interaction. In these compounds the donation and acceptance of electrons occur. The overall charge on such compounds is to be neutralized. For example the compound
This is because both the elements have the charges
Therefore, combinations based on the number of electrons are given as,
(d)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 171CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
(e)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 171CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
(f)
Interpretation: Another universe with different physical laws and in which electrons are given to be described by four quantum numbers with similar meaning is to be assumed. The rules for these quantum numbers are to be given. Quantum numbers are to be called as
Concept introduction: Quantum numbers are the characteristics of the atomic orbitals. The concept of quantum number is given by the famous physicist Schrodinger. There are total four types of quantum numbers are present in an orbital or each orbital is designated by four set of quantum numbers. The quantum numbers are the characteristic of the electrons.
To determine: The number of electrons for the values
Answer to Problem 171CP
Answer
The number of electrons have the values
Explanation of Solution
Explanation
The given quantum number values,
According to the calculated
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry
- Which of the following is a valid set of quantum numbers for an electron in a hydrogen atom? (a) n = 1, = 0, m = 0, ms = 1 (b) n = 1, = 1, m = 0, ms = 1/2 (c) n = 1, = 0, m = 1, ms = + 1/2 (d) n = 1, = 0, m = 0, ms = 1/2arrow_forwardWhich of the following sets of quantum numbers correctly represents a 4p orbital? (a) n = 4, = 0, m = 1 (b) n = 4, = 1, m = 0 (c) n = 4, = 2, m = 1 (d) n = 4, = 1, m =2arrow_forwardAs the weapons officer aboard the Srarship Chemistry, it is your duty to configure a photon torpedo to remove an electron from the outer hull of an enemy vessel. You know that the work function (the binding energy of the electron) of the hull of the enemy ship is 7.52 1019 J. a. What wavelength does your photon torpedo need to be to eject an electron? b. You find an extra photon torpedo with a wavelength of 259 nm and fire it at the enemy vessel. Does this photon torpedo do any damage to the ship (does it eject an electron)? c. If the hull of the enemy vessel is made of the element with an electron configura tion of [Ar]4s13d10, what metal is this?arrow_forward
- Explain the main features of Bohrs theory. Do these features solve the difficulty alluded to in Question 7.8?arrow_forward6.32 What are the mathematical origins of quantum numbers?arrow_forwardAccording to a relationship developed by Niels Bohr, for an atom or ion that has a single electron, the total energy, En, of an electron in a stable orbit of quantum number n is En = [Z2/n2] (2.179 1018 J) where Z is the atomic number. Calculate the ionization energy for the electron in a ground-state He+ ion.arrow_forward
- 6.96 When a helium atom absorbs light at 58.44 nm, an electron is promoted from the 1s orbital to a 2p orbital. Given that the ionization energy of (ground state) helium is 2372 kJ/ mol, find the longest wavelength of light that could eject an electron from the excited state helium atom.arrow_forward6.93 A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.9241014HZ . At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a value of E = 0 to the ground state. (This choice of E = 0 is not the usual convention, but it will simplify the calculations you need to do here.)arrow_forward• identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forward
- What are the allowed values for each of the four quantum numbers: n, l, ml, and ms?arrow_forwardHeated lithium atoms emit photons of light with an energy of 2.9611019 J. Calculate the frequency and wavelength of one of these photons. What is the total energy in 1 mole of these photons? What is the color of the emitted light?arrow_forward6.92 The photoelectric effect can he used to measure the value of Planck's constant. Suppose that a photoelectric effect experiment was carried out using light with v=7.501014s1 and ejected electrons were detected with a kinetic energy of 2.501011 J. The experiment was then repeated using light with v=1.001015s1 and the same metal target, and electrons were ejected with kinetic energy of 5.001011 J. Use these data to find a value for Planck’s constant. HINTS: These data are fictional and will give a result that is quite different from the real value of Planck's constant. Be sure that you do not use the real value of Planck's constant in any calculations here. It may help to start by thinking about how you would calculate the metal's binding energy if you already knew Planck's constant.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning