Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
5th Edition
ISBN: 9781305084766
Author: Saeed Moaveni
Publisher: Cengage Learning
Question
Book Icon
Chapter 7, Problem 15P
To determine

Calculate the average pressure at the bottom of the women’s high-heeled dress shoe and a women’s athletic walking shoe.

Expert Solution & Answer
Check Mark

Answer to Problem 15P

The average pressure at the bottom of the women’s high-heeled dress shoe is 2.17psi_.

The average pressure at the bottom of the women’s athletic walking shoe is 1.67psi_.

Explanation of Solution

Given information:

Weight of the women is W=120lb

Calculation:

The weight of the women is carried by both shoes. Hence, the weight (Force) acting on each shoe is as follows:

F=W2=1202=60lb

Sketch the profile of high-heeled dress shoe in inches as shown in Figure 1.

Engineering Fundamentals: An Introduction to Engineering (MindTap Course List), Chapter 7, Problem 15P , additional homework tip  1

Refer to Figure 1.

The profile of contact area is divided into two equal parts and each part is divided into 8 trapezoids of equal heights.

Consider the area of top portion as A1 and the bottom portion as A2.

Apply trapezoidal rule as shown below.

A=h[12y0+y1+y2++yn2+yn1+12yn] (1)

Calculate the area of top portion (A1) using Equation (1) as shown below.

A1=1×[12(0)+1.12+1.37+1.25+1.75+2.12+2.12+2+1.87+12(0)]=13.6in.2

Calculate the area of bottom portion (A2) using Equation (1) as shown below.

A2=1×[12(0)+1.5+1.62+1.75+2.12+2.12+2+1.62+1.25+12(0)]=13.9814in.2

Calculate the total area of high-heeled dress shoe as shown below.

A=A1+A2

Substitute 13.6in.2 for A1 and 14in.2 for A2.

A=13.6+14=27.6in.2

Calculate the average pressure at the bottom of high-heeled dress shoe as shown below.

Pressure=Force(F)Area(A) (2)

Substitute 60lb for F and 27.6in.2 for A in Equation (2).

Pressure=6027.6=2.17psi

Hence, the average pressure at the bottom of the women’s high-heeled dress shoe is 2.17psi_.

Sketch the profile of athletic walking shoe in inches as shown in Figure 2.

Engineering Fundamentals: An Introduction to Engineering (MindTap Course List), Chapter 7, Problem 15P , additional homework tip  2

Refer to Figure 2.

The profile of contact area is divided into two equal parts and each part is divided into 12 trapezoids of equal heights.

Consider the area of top portion as A1 and the bottom portion as A2.

Calculate the area of top portion (A1) using Equation (1) as shown below.

A1=1×[12(0)+1.12+1.37+1.25+1+0.87+1.12+1.75+2.12+2.12+2+1.87+12(0)]=16.5616.6in.2

Calculate the area of bottom portion (A2) using Equation (1) as shown below.

A2=1×[12(0)+1.5+1.62+1.75+1.62+1.75+2+2.12+2.12+2+1.62+1.25+12(0)]=19.3519.4in.2

Calculate the total area of athletic walking shoe as shown below.

A=A1+A2

Substitute 16.6in.2 for A1 and 19.4in.2 for A2.

A=16.6+19.4=36in.2

Calculate the average pressure at the bottom of athletic walking shoe as shown below.

Substitute 60lb for F and 36in.2 for A in Equation (2).

Pressure=6036=1.67psi

Therefore, the average pressure at the bottom of the women’s athletic walking shoe is 1.67psi_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question 7 of 20 A vertical cylindrical steel tank 3 m in diameter and 6 m high has a wall thickness of 12 mm. If the tank is filed with water, calculate the longitudinal stress. Select the cCorrect response 368 MPa 816 MPa 408 MPa 736 MPa
Question 1 : Answer question A and B   A- If the pressure potential is zero and it is 20-20 cm, find the distance between the slip surface up to a height in mercury manometers (ZM).   B- If a tensometer with a vacuum counter is used from zero to 100, and the meter reading is 34, and the distance between the counter to the center of the ceramic part is 100 cm, calculate the tension.
Refer to the photo provided. Please make sure your handwriting is readable. Internal pressure and axial tensile force are applied to an open cylindrical tank 605 mm in diameter and 3.02 mm thick, resulting in the final stresses illustrated in the Mohr's circle. If a = 40.10 MPa, b = 100.06 MPa, and c = 45.05 MPa. 1. Determine the kPa value of the internal pressure. 2. What is the axial force's magnitude in kN?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning