College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 14CQ
Describe the energy transfers and transformations for a javelin, stating from the point at which an athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 7 Solutions
College Physics
Ch. 7 - Give an example of something think of as work in...Ch. 7 - Give an example of a situation in which there is a...Ch. 7 - Describe a situation in which a force is exerted...Ch. 7 - The person in Figure 7.33 does work on the lawn...Ch. 7 - Work done on a system puts energy into it Work...Ch. 7 - When solving for speed in Example 7.4, we kept...Ch. 7 - In Example 7.7, we calculated the final speed of a...Ch. 7 - Does the work you do on a book when you lift it...Ch. 7 - What is a conservative force?Ch. 7 - The force exerted by a diving board is...
Ch. 7 - Define mechanical energy. What is the relationship...Ch. 7 - What is the relationship of potential energy to...Ch. 7 - Consider the following scenario. A car for which...Ch. 7 - Describe the energy transfers and transformations...Ch. 7 - Do devices with efficiencies of less than one...Ch. 7 - List four different forms or types of energy. Give...Ch. 7 - List the energy conversions that occur when riding...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Explain why it is easier to climb a mountain on a...Ch. 7 - Do you do work on the outside world when you rub...Ch. 7 - Shivering is an involuntary response to lowered...Ch. 7 - Discuss the relative effectiveness of dieting and...Ch. 7 - What is the difference between energy conservation...Ch. 7 - If the efficiency of a coal-fired electrical...Ch. 7 - How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - Compare the kinetic energy of a 20,000-kg truck...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Confirm the value given for the kinetic energy of...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car's bumper is designed to withstand a 4.0-km/h...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A hydroelectric power facility (see Figure 7.38)...Ch. 7 - (a) How much gravitational potential energy...Ch. 7 - Suppose a 350-g kookaburra (a large kingfisher...Ch. 7 - In Example 7.7, we found that the speed of a...Ch. 7 - A 100-g toy car is propelled by a compressed...Ch. 7 - In a downhill ski race, surprisingly, little...Ch. 7 - A 5.00105 -kg subway train is brought to a stop...Ch. 7 - A pogo stick has a spring with a force constant of...Ch. 7 - A 60.0-kg skier with an initial speed of 12.0 m/s...Ch. 7 - (a) How high a hill can a car coast up (engine...Ch. 7 - Using values from Table 7.1, how many DNA...Ch. 7 - Using energy considerations and assuming...Ch. 7 - If the energy in fusion bombs were used to supply...Ch. 7 - (a) Use of hydrogen fusion to supply energy is a...Ch. 7 - The Crab Nebula (see Figure 7.41) pulsar is the...Ch. 7 - Suppose a star 1000 times brighter than our Sun...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Find the useful power output of an elevator...Ch. 7 - (a) What is the available energy content, in...Ch. 7 - (a) How long would it takea 1.50105 -kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - (a) Calculate the power per square meter reaching...Ch. 7 - (a) How long can you rapidly climb stairs...Ch. 7 - (a) What is the power output in watts and...Ch. 7 - Calculate the power output in watts and horsepower...Ch. 7 - (a) What is the efficiency of an out-of-condition...Ch. 7 - Energy that is not utilized for work or heat...Ch. 7 - Using data from Table 7.5, calculate the daily...Ch. 7 - What is the efficiency of a subject on a treadmill...Ch. 7 - Shoveling snow can be extremely taxing because the...Ch. 7 - Very large forces are produced in joints when a...Ch. 7 - Jogging on hard surfaces with insufficiently...Ch. 7 - (a) Calculate the energy in kJ used by a 55.0-kg...Ch. 7 - Kanellos Kanellopoulos flew 119 km from Crete to...Ch. 7 - The swimmer shown in Figure 7.44 exerts an average...Ch. 7 - Mountain climbers carry bottled oxygen when at...Ch. 7 - The awe-inspiring Great Pyramid of Cheops was...Ch. 7 - (a) How long can you play tennis on the 800 kJ...Ch. 7 - Integrated Concepts (a) Calculate the force the...Ch. 7 - Integrated Concepts A 75.0-kg cross-country skier...Ch. 7 - Integrated Concepts The 70.0-kg swimmer in Figure...Ch. 7 - Integrated Concepts A toy gun uses a spring with a...Ch. 7 - Integrated Concepts (a) What force must be...Ch. 7 - Unreasonable Results A car advertisement claims...Ch. 7 - Unreasonable Results Body fat is metabolized,...Ch. 7 - Construct Your Own Problem Consider a person...Ch. 7 - Construct Your Own Problem Consider humans...Ch. 7 - Integrated Concepts A 105-kg basketball player...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which of the roll owing compounds have a dipole moment of zero?
Organic Chemistry (8th Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
1. What are the main organs of the skeletal system?
Human Anatomy & Physiology (2nd Edition)
What percentage of Earths land surface do glaciers presently cover? ____________
Applications and Investigations in Earth Science (9th Edition)
Alkaptonuria is an infrequent autosomal recessive condi-tion. It is first noticed in newborns when the urine in...
Genetic Analysis: An Integrated Approach (3rd Edition)
16. A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz. At , the mass is at and ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Answer yes or no to each of the following questions. (a) Can an objectEarth system have kinetic energy and not gravitational potential energy? (b) Can it have gravitational potential energy and not kinetic energy? (c) Can it have both types of energy at the same moment? (d) Can it have neither?arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forwardAt the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.25 m above where it started. Using conservation of energy, find a. the balls initial speed and b. the height of the ball when it has a speed of 2.5 m/s.arrow_forward
- A 5.00-kg block is set into motion up an inclined plane with an initial speed of i = 8.00 m/s (Fig. P7.21). The block comes to rest after traveling d = 3.00 m along the plane, which is inclined at an angle of = 30.0 to the horizontal. For this motion, determine (a) the change in the blocks kinetic energy, (b) the change in the potential energy of the block-Earth system, and (c) the friction force exerted on the block (assumed to be constant), (d) What is the coefficient of kinetic friction? Figure P7.21arrow_forward(a) Sketch a graph of the potential energy function U(x)=kx2/2+Aex2 where k , A, and are constants. (b) What is the force corresponding to this potential energy? (c) Suppose a particle of mass in moving with this potential energy has a velocity v when its position is x = . Show that the particle does not pass 2+2 through the origin unless Amv2=k22(1e a 2 ) .arrow_forwardA boy starts at rest and slides down a frictionless slide as in Figure P5.64. The bottom of the track is a height h above the ground. The boy then leaves the track horizontally, striking the ground a distance d as shown. Using energy methods, determine the initial height H of the boy in terms of h and d. Figure P5.64arrow_forward
- A 300 g hockey puck is shot across an ice-covered pond. Before the hockey puck was hit, the puck was at rest. After the hit, the puck has a speed of 40 m/s. The puck comes to rest after going a distance of 30 m. (a) Describe how the energy of the puck changes over time, giving the numerical values of any work or energy involved. (b) Find the magnitude of the net friction force.arrow_forwardA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P7.45). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point , (c) its speed at point , and (d) its kinetic energy and the potential energy when the block is at point . Figure P7.45 Problems 45 and 46.arrow_forwardA block of mass m = 5.00 kg is released from point and slides on the frictionless track shown in Figure P8.3. Determine (a) the blocks speed at points and and (b) the net work done by the gravitational force on the block as it moves from point to point . Figure P8.3arrow_forward
- Review. The mass of a car is 1 500 kg. The shape of the cars body is such that its aerodynamic drag coefficient is D = 0.330 and its frontal area is 2.50 m2. Assuming the drag force is proportional to v2 and ignoring other sources of friction, calculate the power required to maintain a speed of 100 km/h as the car climbs a long hill sloping at 3.20.arrow_forwardTwo children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller child hops off to jump straight down into the pool, the bigger child releases herself at the top of the frictionless slide. (i) Upon reaching the water, the kinetic energy of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal. (ii) Upon reaching the water, the speed of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal. (iii) During their motions from the platform to the water, the average acceleration of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal.arrow_forwardA book of mass in is projected with a speed v across a horizontal surface. The book slides until it stops due to the friction force between the book and the surface. The surface is now tilted 30, and the book is projected up the surface with the same initial speed v. When the book has come to rest, how does the decrease in mechanical energy of the book-Earth system compare with that when the book slid over the horizontal surface? (a) Its the same. (b) Its larger on the tilted surface. (c) Its smaller on the tilted surface. (d) More information is needed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY