Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 12Q

(a)

To determine

The kinetic energy of an asteroid having radius 2 km with an average density of 2500 kg/m3 striking the Earth with 25 km/s.

(a)

Expert Solution
Check Mark

Answer to Problem 12Q

Solution:

The kinetic energy of the asteroid is found out to be 3.27×1015 J.

Explanation of Solution

Given data:

The velocity of the asteroid hitting the Earth is 25 m/s.

The radius of the asteroid is 2 km.

The density of the asteroid is 2500 kg/m3

Formula used:

The mass of the asteroid can be calculated by the following expression:

m=ρV

Here, m represents the mass of the asteroid, ρ represents the density of the asteroid, and V represents the volume of the asteroid.

The expression for the volume of a sphere is:

V=43πr3

Here, r represents the radius.

Conversion formula from kilometer to meter is:

1 km = 1000 m

The kinetic energy is calculated by the below expression:

K=12mv2

Here, K represents the kinetic energy, m represents the mass of the body, and v represents the velocity of the body.

Explanation:

Recall the expression for calculating the volume.

V=43πr3

Substitute 1 km for r and also use the conversion formula.

V=43π(1 km×(1000 m1 km))3=43π(1000 m)3

Recall the expression of mass.

m=ρV

Substitute 43π(1000 m)3 for V and 2500 kg/m3 for ρ.

m=ρV=ρ(43πr3)=(2500 kg/m3)(43π(1000 m)3)=1.047×1013 kg

The mass of asteroid is 1.047×1013 kg.

Recall the expression for the kinetic energy.

K=12mv2

Substitute 25 km/s for v, 1.047×1013 kg for m, and use the conversion formula:

K=12mv2=12(1.047×1013 kg)(25 km/s×1000 m1 km)2=3.27×1021 J

Conclusion:

Thus, the kinetic energy of the asteroid is found out to be 3.27×1021 J.

(b)

To determine

The comparison between the energy released by the impact of asteroid mentioned in sub-part (a) to the energy released by a 20-kiloton nuclear weapon, which was similar to the nuclear weapon dropped on Hiroshima.

(b)

Expert Solution
Check Mark

Answer to Problem 12Q

Solution:

The energy released during nuclear destruction is 40 times smaller than the energy released during the asteroid strike.

Explanation of Solution

Given data:

The energy released by the nuclear weapon is 20-kilotons.

Formula used:

1 kiloton of TNT emits 4.2×1012 J of energy.

The expression of energy released in joules is:

EJoules=EkN×(4.2×1012J)

Explanation:

From sub-part (a), the value of kinetic energy of the asteroid is 3.27×1015 J.

Recall the expression of energy released in joules.

EJoules=EkN×(4.2×1012J)

Substitute 20 kN for EkN.

EJoules=(20 kN)×(4.2×1012J)=8.4×1013 J

Refer to the value of energy released by the impact of an asteroid that is 3.27×1021 J.

The energy released in nuclear attack is 8.4×1013 J.

Taking the ratio of both the above energies,

3.27×1021 J8.4×1013 J=3.89×1074×107

Conclusion:

Therefore, the kinetic energy of the asteroid striking the Earth’s surface is 4×107 times greater than the energy released during the nuclear attack in Hiroshima.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=
Four point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…
Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1)  Charge q3 is to the right of charge q2. 2)  Charge q3 is between charges q1 and q2. 3)  Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1)  The magnitude of the net force on charge q3 would still be zero. 2)  The effect depends upon the numeric value of charge q3. 3)  The net force on charge q3 would be towards q2. 4)  The net force on charge q3 would be towards q1. D. Select option that…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY