
(a)
The mass of a hypothetical spherical asteroid with a diameter equal to
(a)

Answer to Problem 11Q
Solution:
The mass of asteroid is
Explanation of Solution
Given data:
The diameter of the asteroid is
The average density of the rock is
Formula used:
The mass of the asteroid can be calculated by the following expression:
Here,
The expression for the volume of a sphere is:
Here,
Conversion formula from kilometer to the meter is:
1 km = 1000 m
Explanation:
Recall the expression for calculating the volume.
Substitute 1 km for
Recall the expression of mass.
Substitute
Conclusion:
Thus, the mass of asteroid is
(b)
The escape velocity to escape from the surface of an asteroid, if the diameter of the spherical asteroid is 2 km and is composed of rocks with an average density of
(b)

Answer to Problem 11Q
Solution:
The escape velocity of the asteroid is 1.18 m/s.
Explanation of Solution
Given data:
The diameter of the asteroid is
The average density of the rock is
Formula used:
The expression for escape speed required to escape from the surface is:
Here,
The expression for calculating the radius is:
Conversion formula from kilometer to the meter is:
1 km = 1000 m
Explanation:
Refer the sub-part (a) for the value of mass that is
Consider the value of
Recall the expression for calculating the radius.
Substitute
Recall the expression of escape velocity.
Substitute
Conclusion:
Thus, the velocity to escape this asteroid is given as
(c)
The situation of an astronaut, if he decided to go for a jog with the speed 3m/s on an asteroid. If the diameter of the spherical asteroid is 2 km and is composed of rocks, with an average density of
(c)

Answer to Problem 11Q
Solution:
He would eventually leave the planet and float in the space.
Explanation of Solution
Introduction:
If a body attains a speed greater than the escape velocity for that surface, then it would leave the surface and acquire its position in space.
Explanation:
From sub-part (a), the value of escape speed for an asteroid is, 1.8 m/s.
The astronaut started jogging on the asteroid with the speed 3 m/s and this speed is greater than the escape velocity for the asteroid surface. So, the astronaut would eventually escape from the asteroid surface.
Conclusion:
Since the jog speed of the astronaut is greater than the escape velocity of the asteroid, he will eventually leave the planet and float in the space.
Want to see more full solutions like this?
Chapter 7 Solutions
Universe
- What All equations of Ountum physics?arrow_forwardPlease rewrite the rules of Quantum mechanics?arrow_forwardSuppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step-down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.arrow_forward
- The human eye is most sensitive to light having a frequency of about 5.5 × 1014 Hz, which is in the yellow-green region of the electromagnetic spectrum. How many wavelengths of this light can fit across a distance of 2.2 cm?arrow_forwardA one-dimensional harmonic oscillator of mass m and angular frequency w is in a heat bath of temperature T. What is the root mean square of the displacement of the oscillator? (In the expressions below k is the Boltzmann constant.) Select one: ○ (KT/mw²)1/2 ○ (KT/mw²)-1/2 ○ kT/w O (KT/mw²) 1/2In(2)arrow_forwardTwo polarizers are placed on top of each other so that their transmission axes coincide. If unpolarized light falls on the system, the transmitted intensity is lo. What is the transmitted intensity if one of the polarizers is rotated by 30 degrees? Select one: ○ 10/4 ○ 0.866 lo ○ 310/4 01/2 10/2arrow_forward
- Before attempting this problem, review Conceptual Example 7. The intensity of the light that reaches the photocell in the drawing is 160 W/m², when 0 = 18°. What would be the intensity reaching the photocell if the analyzer were removed from the setup, everything else remaining the same? Light Photocell Polarizer Insert Analyzerarrow_forwardThe lifetime of a muon in its rest frame is 2.2 microseconds. What is the lifetime of the muon measured in the laboratory frame, where the muon's kinetic energy is 53 MeV? It is known that the rest energy of the muon is 106 MeV. Select one: O 4.4 microseconds O 6.6 microseconds O 3.3 microseconds O 1.1 microsecondsarrow_forwardThe Lagrangian of a particle performing harmonic oscil- lations is written in the form L = ax² - Bx² - yx, where a, and are constants. What is the angular frequency of oscillations? A) √2/a B) √(+2a)/B C) √√Ba D) B/αarrow_forward
- The mean temperature of the Earth is T=287 K. What would the new mean temperature T' be if the mean distance between the Earth and the Sun was increased by 2%? Select one: ○ 293 K O 281 K ○ 273 K 284 Karrow_forwardTwo concentric current-carrying wire loops of radius 3 cm and 9 cm lie in the same plane. The currents in the loops flow in the same direction and are equal in magnitude. The magnetic field at the common center of the loops is 50 mT. What would be the value of magnetic field at the center if the direction of the two currents was opposite to each other (but their value is kept constant)? Select one: ○ 20 mT ○ 10 mT O 15 mT ○ 25 mTarrow_forwardAn ideal coil of inductivity 50 mH is connected in series with a resistor of 50 ohm. This system is connected to a 4.5 V battery for a long time. What is the current in the circuit? Select one: O 45 mA ○ 90 mA 00 mA O 150 mAarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning





