Operations Management: Sustainability and Supply Chain Management (12th Edition)
12th Edition
ISBN: 9780134130422
Author: Jay Heizer, Barry Render, Chuck Munson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.S, Problem 43P
Summary Introduction
To determine: Process capability index
Introduction: Statistical process control is the method that helps to measure and control the quality during the process of production.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The specification for a plastic liner for concrete highway projects calls for a thickness of 6.0 mm ± 0.1 mm. The standard deviation of the process is estimated to be 0.02 mm. What are the upper and lower specification limits for this product? The process is known to operate at a mean thickness of 6.03 mm. What is the Cp and Cpk for this process? About what percent of all units of this liner will meet specifications?
The specifications for a gasket that installs between two engine parts calls for a thickness of 6.0 mm ± .2 mm. The standard deviation of the process is estimated to be 0.05 mm. The process is known to operate at a mean thickness of 6.1 mm
What are the upper and lower specification limits for the gasket?
What are the Cp and Cpk values for this process?
Is this process capable of producing the desired part?
Please do not give solution in image formate thanku.
The specification for a plastic liner for concrete highway projects calls for a thickness of 6.0 mm ± 0.1 mm. The standard deviation of the process is estimated to be 0.02 mm. The process is known to operate at a mean thickness of 6.03 mm. What is the Cp and Cpk for this process? Determine whether this process meet 3-sigma requirements, 6-sigma requirements, or doesn’t meet any requirements.
Chapter 6 Solutions
Operations Management: Sustainability and Supply Chain Management (12th Edition)
Ch. 6.S - Prob. 1DQCh. 6.S - Define in statistical control.Ch. 6.S - Prob. 3DQCh. 6.S - Prob. 4DQCh. 6.S - Prob. 5DQCh. 6.S - Prob. 6DQCh. 6.S - Prob. 7DQCh. 6.S - Prob. 8DQCh. 6.S - Prob. 9DQCh. 6.S - Prob. 10DQ
Ch. 6.S - Prob. 11DQCh. 6.S - Prob. 12DQCh. 6.S - Prob. 13DQCh. 6.S - Prob. 14DQCh. 6.S - Prob. 15DQCh. 6.S - Prob. 16DQCh. 6.S - Prob. 17DQCh. 6.S - What does the formula L = D2C mean?Ch. 6.S - Prob. 19DQCh. 6.S - An avant-garde clothing manufacturer runs a series...Ch. 6.S - Prob. 2PCh. 6.S - Prob. 3PCh. 6.S - Prob. 4PCh. 6.S - Prob. 5PCh. 6.S - Develop a flowchart [as in Figure 6.6 (e) and...Ch. 6.S - Prob. 7PCh. 6.S - Prob. 8PCh. 6.S - Prob. 9PCh. 6.S - Prob. 10PCh. 6.S - Prob. 11PCh. 6.S - Prob. 12PCh. 6.S - Prob. 13PCh. 6.S - Prob. 14PCh. 6.S - Prob. 15PCh. 6.S - Prob. 16PCh. 6.S - Prob. 17PCh. 6.S - Prob. 18PCh. 6.S - Prob. 19PCh. 6.S - Prob. 20PCh. 6.S - Prob. 21PCh. 6.S - Prob. 22PCh. 6.S - Prob. 23PCh. 6.S - Prob. 24PCh. 6.S - Prob. 25PCh. 6.S - Prob. 40PCh. 6.S - Prob. 41PCh. 6.S - Prob. 42PCh. 6.S - Prob. 43PCh. 6.S - Prob. 44PCh. 6.S - Prob. 45PCh. 6.S - Prob. 51PCh. 6.S - Prob. 52PCh. 6.S - Prob. 26PCh. 6.S - Prob. 27PCh. 6.S - Prob. 53PCh. 6.S - Prob. 54PCh. 6.S - Prob. 55PCh. 6.S - Prob. 1CSCh. 6.S - Prob. 2CSCh. 6.S - Prob. 1.1VCCh. 6.S - Prob. 1.2VCCh. 6.S - Prob. 1.3VCCh. 6.S - Prob. 2.1VCCh. 6.S - Prob. 2.2VCCh. 6.S - Prob. 2.3VCCh. 6.S - Prob. 2.4VCCh. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 3DQCh. 6 - Prob. 4DQCh. 6 - Prob. 5DQCh. 6 - Prob. 6DQCh. 6 - Prob. 7DQCh. 6 - Prob. 8DQCh. 6 - Prob. 9DQCh. 6 - Prob. 10DQCh. 6 - Prob. 11DQCh. 6 - Prob. 12DQCh. 6 - Prob. 13DQCh. 6 - Prob. 14DQCh. 6 - Prob. 15DQCh. 6 - Prob. 16DQCh. 6 - Prob. 17DQCh. 6 - Prob. 18DQCh. 6 - An avant-garde clothing manufacturer runs a series...Ch. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Kathleen McFaddens restaurant in Boston has...Ch. 6 - Develop a flowchart [as in Figure 6.6 (e) and...Ch. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 1CSCh. 6 - How could the survey have been more useful?Ch. 6 - Prob. 3CSCh. 6 - Prob. 1.1VCCh. 6 - Prob. 1.2VCCh. 6 - Prob. 1.3VCCh. 6 - Prob. 1.4VCCh. 6 - Prob. 2.1VCCh. 6 - Prob. 2.2VCCh. 6 - Prob. 2.3VCCh. 6 - Prob. 2.4VCCh. 6 - Prob. 2.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- A bottle-filling process has a lower specification limit of 0.99 liter and an upperspecification limit of 1.01 liters. The standard deviation is 0.005 liter and the mean is 1 liter.What is the process capability index for the bottle-filling process?arrow_forwardStudies on a machine that molds plastic water pipe indicate that when it is injecting1-inch diameter pipe, the process standard deviation is 0.05 inches. The one-inchpipe has a specification of 1-inch plus or minus 0.10 inch. What is the processcapability index (Cp) if the long-run process mean is 1 inch?arrow_forwardFigure 12–1 presents a conceptual picture of the trade-off between process cost and the costs of losses due to poor quality. What are the costs of poor quality and what difficulties might arise when attempting to measure these costs?arrow_forward
- Specifications for a part for a 3-D printer state that the part should weigh between 24 and25 ounces. The process that produces the parts has a mean of 24.5 ounces and a standard deviation of .2 ounce. The distribution of output is normal. What percentage of parts will not meet the weight specs? Within what values will 95.44 percent of the sample means of this process fall if samples of n = 16 are taken and the process is in control (random)? Using the control limits from part b, would the following sample means be in control? 24.52, 24.53, 24.44, 24.51, 24.41, 24.39 An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approxi- mately normal with a mean of 1.0 liter and a standard deviation of .01 liter. Output is monitored using means of samples of 25 observations. Determine upper and lower control limits that will include roughly 97 percent of the sample means when the process is in control. Given the following sample means—1.005,…arrow_forwardCanine Gourmet Super Breath dog treats are sold in boxes labeled with a net weight of 15 ounces (425 grams) per box. Each box contains 10 individual 1.5-ounce packets. To reduce the chances of shorting thecustomer, product design specifications call for the packet-filling process average to be set at 44.0 grams so that the average net weight per box of 10 packets will be 440 grams. Tolerances are set for the box to weigh 440±14 grams. The standard deviation for the packet-filling process is 1.03 grams. The target process capability ratio is 1.67. One day, the packet-filling process average weight drifts down to 43.0 grams. Is the packaging process capable? Is an adjustment needed? Since the process capability index, Cpk, is nothing, the process ▼ is capable is not capable . (Enter your response rounded to three decimal placesarrow_forwardHi, I need help solving for part A. Thank you! (Note: Table S6.1 is shown in the 'Definition' box popup.)arrow_forward
- K- The Tyler Apiaries sells bees and beekeeping supplies Bees (including a queen) are shipped in special packages according to weight. target weight of a package is 1.2 kg. Historically, Tyler's shipments have weighed on average 1 2 kg, with a standard deviation of 0.07 kg a. The lower and upper tolerance limits are 1.1 kg and 1.3 kg, respectively The process capability ratio is 0476 (Enter your response rounded to three decimal places) capable of meeting the tolerance limits 99 7% of the time Tyler Apiariesarrow_forwardThe production manager at Sunny Soda, Inc., is interested in tracking the quality of the company’s 12-ounce bottle filling line. The bottles must be filled within the tolerances set for this product because the dietary information on the label shows 12 ounces as the serving size. The design standard for the product calls for a fill level of 12.00 ± 0.10 ounces. The manager collected the following sample data (in fluid ounces per bottle) on the production process: Observation Sample 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 12.00 11.91 11.89 12.10 12.08 11.94 12.09 12.01 12.00 11.92 11.91 12.01 11.98 12.02 12.00 11.97 11.94 12.02 12.09 11.92 11.98 12.00 12.04 11.96 11.94 11.99 12.00 11.99 12.00 12.05 12.10 12.10 11.97 12.05 12.12 12.06 12.00 11.99 11.97 12.09 12.05 12.06 12.06 12.05 12.01 12.08 11.96 11.99 11.95 12.05 12.08 12.03 11.95 12.03 12.00 12.10 11.97 12.03 11.95 11.97 a. Are the process average and range in statistical control?b. Is the process capable…arrow_forwardExplain every optionarrow_forward
- please provide upper and lower limitarrow_forwardDesign specifications require that a key dimension on a product measure 100 ± 10 units. A process being considered for producing this product has a standard deviation of four units. What can you say (quantitatively) regarding the process capability? Assume that the process is centered with respect to specifications. Note: Round your answer to 4 decimal places. Suppose the process average shifts to 92. Calculate the new process capability. Note: Round your answer to 4 decimal places. What is the probability of defective output after the process shift? Note: Use Excel's NORM.S.DIST function to find the correct probability. Round "z" values to 2 decimal places. Round your answer to 4 decimal places.arrow_forwardLay's potato chip filling process has a lower specification limit of 9.5 oz. and an upper specification of 10.5 oz. The mean is 10 oz. What should be the value for standard deviation in this process to achieve a ppm of 5110? A. 0.1786 B. 0.2675 OC. 0.4453 OD. 0.3564arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.