
Calculus For The Life Sciences
2nd Edition
ISBN: 9780321964038
Author: GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher: Pearson Addison Wesley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.CR, Problem 37CR
To determine
To find:
The value of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Each of the following statements is an attempt to show that a given series is convergent or
divergent using the Comparison Test (NOT the Limit Comparison Test.) For each statement, enter C
(for "correct") if the argument is valid, or enter | (for "incorrect") if any part of the argument is
flawed. (Note: if the conclusion is true but the argument that led to it was wrong, you must enter I.)
☐ 1. For all n > 1,
seriesΣ In(n)
In(n)
converges.
2, 1,
arctan(n)
the series arctan(n)
n³
☐ 4. For all n > 1,
123
converges.
1
n ln(n)
series In(n) diverges.
2n
.
and the seriesΣconverges, so by the Comparison Test,
2, 3, and the series converges, so by the Comparison Test, the
series-3
1
converges.
☐ 6. For all n > 2, In(n) >, and the series Σ converges, so by the Comparison Test, the
seriesΣ
In(n) converges.
Instructions.
"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."
Both in images okk. Instructions.
"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."
Chapter 6 Solutions
Calculus For The Life Sciences
Ch. 6.1 - YOUR TURN Find the absolute extrema of the...Ch. 6.1 - Prob. 2YTCh. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - Prob. 3ECh. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - Prob. 8E
Ch. 6.1 - EXERCISES What is the difference between a...Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Find the absolute extrema if they exist, as well...Ch. 6.1 - Prob. 30ECh. 6.1 - EXERCISES Graph each function on the indicated...Ch. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - EXERCISES Let f(x)=e2x, For x0, let P(x) be the...Ch. 6.1 - Prob. 43ECh. 6.1 - EXERCISES Salmon Spawning The number of salmon...Ch. 6.1 - Prob. 45ECh. 6.1 - EXERCISES Fungal growth Because of the time that...Ch. 6.1 - EXERCISES Dentin Growth The growth of dentin in...Ch. 6.1 - Prob. 48ECh. 6.1 - Prob. 49ECh. 6.1 - EXERCISES Satisfaction Suppose some substance such...Ch. 6.1 - EXERCISES Area A piece of wire 12 ft long is cut...Ch. 6.1 - EXERCISES Area A piece of wire 12 ft long is cut...Ch. 6.1 - EXERCISES Area A piece of wire 12 ft long is cut...Ch. 6.1 - Prob. 54ECh. 6.1 - Prob. 56ECh. 6.1 - Prob. 57ECh. 6.1 - Prob. 58ECh. 6.2 - Find two nonnegative number x and y for which...Ch. 6.2 - YOUR TURN Suppose the animal in Example 2 can run...Ch. 6.2 - YOUR TURN Repeat Example 3 using an 8m by 8m piece...Ch. 6.2 - YOUR TURN Repeat Example 4 if the volume is to be...Ch. 6.2 - Prob. 1ECh. 6.2 - EXERCISES In Exercises 1-4, use the steps shown in...Ch. 6.2 - EXERCISES In Exercises 1-4, use the steps shown in...Ch. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - EXERCISES Disease Another disease hits the...Ch. 6.2 - EXERCISES Maximum Sustainable Harvest Find the...Ch. 6.2 - EXERCISES Maximum Sustainable Harvest Find the...Ch. 6.2 - EXERCISES Pollution A lake polluted by bacteria is...Ch. 6.2 - Prob. 10ECh. 6.2 - Maximum Sustainable Harvest In Exercise 11 and 12,...Ch. 6.2 - Maximum Sustainable Harvest In Exercise 11 and 12,...Ch. 6.2 - Prob. 13ECh. 6.2 - Pigeon Flight Repeat Exercise 13, but assume a...Ch. 6.2 - Applications of Extrema Bird Migration Suppose a...Ch. 6.2 - Prob. 17ECh. 6.2 - Prob. 19ECh. 6.2 - Applications of Extrema OTHER APPLICATIONS Area A...Ch. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - OTHER APPLICATIONS Cost with Fixed Area A fence...Ch. 6.2 - OTHER APPLICATIONS Packaging Design An exercise...Ch. 6.2 - OTHER APPLICATIONS Packaging Design A company...Ch. 6.2 - OTHER APPLICATIONS Container Design An open box...Ch. 6.2 - OTHER APPLICATIONS Container Design Consider the...Ch. 6.2 - OTHER APPLICATIONS Packaging Cost A closed box...Ch. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Packaging Design A cylindrical box will be tied up...Ch. 6.2 - Cost A company wishes to run a utility cable from...Ch. 6.2 - Cost Repeat Exercise 38, but make point A 7 miles...Ch. 6.2 - Prob. 40ECh. 6.2 - Travel Time Repeat Example 40, but assume the...Ch. 6.2 - Postal Regulations The U.S. postal service...Ch. 6.2 - Ladder A thief tries to enter a building by...Ch. 6.2 - Ladder A janitor in a hospital needs to carry a...Ch. 6.3 - Find dydx if x2+y2=xy.Ch. 6.3 - Prob. 2YTCh. 6.3 - Your Turn The graph of y4x4y2+x2=0 is called the...Ch. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Find dydxby implicit differentiation for the...Ch. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Find dy/dxby implicit differentiation for the...Ch. 6.3 - Find dy/dxby implicit differentiation for the...Ch. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - EXERCISES Find dy/dxby implicit differentiation...Ch. 6.3 - Find dy/dxby implicit differentiation for the...Ch. 6.3 - Prob. 16ECh. 6.3 - EXERCISES Find dy/dxby implicit differentiation...Ch. 6.3 - Prob. 18ECh. 6.3 - EXERCISES Find the equation of the tangent line at...Ch. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Find the equation of the tangent line at the given...Ch. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Information on curve in Exercise 37-40, as well as...Ch. 6.3 - Information on curve in Exercise 37-40, as well as...Ch. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Biochemical Reaction A simple biochemical reaction...Ch. 6.3 - Species The relationship between the number of...Ch. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.4 - YOUR TURN Suppose x are y are both functions of t...Ch. 6.4 - YOUR TURN A 25ft ladder is placed against a...Ch. 6.4 - Prob. 3YTCh. 6.4 - Repeat Example 5 using the daily demand function...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Assume xand yare functions of t.Evaluate dy/dtfor...Ch. 6.4 - Assume xand yare functions of t.Evaluate dy/dtfor...Ch. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - LIFE SCIENCE APPLICATIONS Brain Mass The brain...Ch. 6.4 - Prob. 14ECh. 6.4 - LIFE SCIENCE APPLICATIONS Metabolic Rate The...Ch. 6.4 - LIFE SCIENCE APPLICATIONS Metabolic Rate The...Ch. 6.4 - Lizards The energy cost of horizontal locomotion...Ch. 6.4 - Prob. 18ECh. 6.4 - Crime Rate Sociologists have found that crime...Ch. 6.4 - Memorization Skills Under certain conditions, a...Ch. 6.4 - Sliding Ladder A 17-ft ladder is placed against a...Ch. 6.4 - Distance a. One car leaves a given point and...Ch. 6.4 - AreaA rock is thrown into a still pond. The...Ch. 6.4 - A spherical snowball is placed in the sun. The sun...Ch. 6.4 - Ice CubeAn ice cube that is 3 cm on each side is...Ch. 6.4 - Prob. 26ECh. 6.4 - LIFE SCIENCE APPLICATION Shadow Length A man 6 ft...Ch. 6.4 - LIFE SCIENCE APPLICATION Water Level A trough has...Ch. 6.4 - Prob. 29ECh. 6.4 - LIFE SCIENCE APPLICATION Kite Flying Christine...Ch. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Rotating Lighthouse The beacon on a lighthouse 50m...Ch. 6.4 - Rotating Camera A television camera on a tripod...Ch. 6.5 - YOUR TURN Find dy if y=300x23,x=8, and dx=0.05.Ch. 6.5 - Prob. 2YTCh. 6.5 - YOUR TURN Repeat Example 4 for r=1.25mm with a...Ch. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - For Exercises 1-8, find dyfor the given values of...Ch. 6.5 - Differentials: Linear Approximation For Exercises...Ch. 6.5 - Differentials: Linear Approximation For Exercises...Ch. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Use the differential to approximate each quantity....Ch. 6.5 - Prob. 13ECh. 6.5 - Use the differential to approximate each quantity....Ch. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Use the differential to approximate each quantity....Ch. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - LIFE SCIENCE APPLICATIONS Bacteria Population The...Ch. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - LIFE SCIENCE APPLICATIONS Area of an Oil Slick An...Ch. 6.5 - LIFE SCIENCE APPLICATIONS Area of a Bacteria...Ch. 6.5 - Prob. 26ECh. 6.5 - LIFE SCIENCE APPLICATIONS Pigs Researchers have...Ch. 6.5 - Prob. 28ECh. 6.5 - OTHER APPLICATIONS Volume A spherical snowball is...Ch. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.5 - Prob. 35ECh. 6.5 - Tolerance A worker is constructing a cubical box...Ch. 6.5 - Measurement Error A cone has a known height of...Ch. 6.5 - Material Requirement A cube 4in. on an edge is...Ch. 6.5 - Material Requirement Beach balls 1ft in diameter...Ch. 6.CR - Prob. 1CRCh. 6.CR - Prob. 2CRCh. 6.CR - Prob. 3CRCh. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Prob. 8CRCh. 6.CR - Prob. 9CRCh. 6.CR - Prob. 10CRCh. 6.CR - Prob. 11CRCh. 6.CR - Prob. 12CRCh. 6.CR - Prob. 13CRCh. 6.CR - Prob. 14CRCh. 6.CR - Prob. 15CRCh. 6.CR - Prob. 16CRCh. 6.CR - Prob. 18CRCh. 6.CR - Prob. 19CRCh. 6.CR - Prob. 20CRCh. 6.CR - Prob. 21CRCh. 6.CR - Prob. 22CRCh. 6.CR - Prob. 23CRCh. 6.CR - Prob. 24CRCh. 6.CR - Prob. 25CRCh. 6.CR - Prob. 26CRCh. 6.CR - Prob. 27CRCh. 6.CR - Prob. 28CRCh. 6.CR - Prob. 29CRCh. 6.CR - Prob. 30CRCh. 6.CR - Prob. 31CRCh. 6.CR - Prob. 32CRCh. 6.CR - Prob. 33CRCh. 6.CR - Prob. 34CRCh. 6.CR - Prob. 35CRCh. 6.CR - Prob. 36CRCh. 6.CR - Prob. 37CRCh. 6.CR - Prob. 38CRCh. 6.CR - Prob. 39CRCh. 6.CR - Prob. 40CRCh. 6.CR - Prob. 41CRCh. 6.CR - Prob. 42CRCh. 6.CR - Prob. 43CRCh. 6.CR - Prob. 44CRCh. 6.CR - Prob. 45CRCh. 6.CR - Prob. 46CRCh. 6.CR - Prob. 47CRCh. 6.CR - Prob. 48CRCh. 6.CR - Prob. 49CRCh. 6.CR - Prob. 50CRCh. 6.CR - Prob. 53CRCh. 6.CR - Prob. 54CRCh. 6.CR - OTHER APPLICATIONS Sliding Ladder A 50-ft ladder...Ch. 6.CR - Prob. 56CRCh. 6.CR - Prob. 57CRCh. 6.CR - Prob. 58CRCh. 6.CR - Prob. 59CRCh. 6.CR - Prob. 60CRCh. 6.CR - Prob. 61CRCh. 6.CR - Prob. 62CRCh. 6.CR - Prob. 63CRCh. 6.CR - Prob. 64CRCh. 6.CR - Prob. 65CRCh. 6.CR - Prob. 66CRCh. 6.CR - Prob. 67CRCh. 6.CR - Prob. 68CRCh. 6.EA - In this application, we set up a mathematical...Ch. 6.EA - Prob. 2EACh. 6.EA - Prob. 3EACh. 6.EA - Prob. 4EACh. 6.EA - Prob. 5EACh. 6.EA - Prob. 6EA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Question 1: If a barometer were built using oil (p = 0.92 g/cm³) instead of mercury (p = 13.6 g/cm³), would the column of oil be higher than, lower than, or the same as the column of mercury at 1.00 atm? If the level is different, by what factor? Explain. (5 pts) Solution: A barometer works based on the principle that the pressure exerted by the liquid column balances atmospheric pressure. The pressure is given by: P = pgh Since the atmospheric pressure remains constant (P = 1.00 atm), the height of the liquid column is inversely proportional to its density: Step 1: Given Data PHg hol=hgx Poil • Density of mercury: PHg = 13.6 g/cm³ Density of oil: Poil = 0.92 g/cm³ • Standard height of mercury at 1.00 atm: hμg Step 2: Compute Height of Oil = 760 mm = 0.760 m 13.6 hoil = 0.760 x 0.92 hoil = 0.760 × 14.78 hoil = 11.23 m Step 3: Compare Heights Since oil is less dense than mercury, the column of oil must be much taller than that of mercury. The factor by which it is taller is: Final…arrow_forwardQuestion 3: A sealed flask at room temperature contains a mixture of neon (Ne) and nitrogen (N2) gases. Ne has a mass of 3.25 g and exerts a pressure of 48.2 torr. . N2 contributes a pressure of 142 torr. • What is the mass of the N2 in the flask? • Atomic mass of Ne = 20.1797 g/mol • Atomic mass of N = 14.0067 g/mol Solution: We will use the Ideal Gas Law to determine the number of moles of each gas and calculate the mass of N2. PV = nRT where: • P = total pressure • V volume of the flask (same for both gases) n = number of moles of gas • R 0.0821 L atm/mol K • T = Room temperature (assume 298 K) Since both gases are in the same flask, their partial pressures correspond to their mole fractions. Step 1: Convert Pressures to Atmospheres 48.2 PNe = 0.0634 atm 760 142 PN2 = = 0.1868 atm 760 Step 2: Determine Moles of Ne nNe = mass molar mass 3.25 nNe 20.1797 nne 0.1611 mol Step 3: Use Partial Pressure Ratio to Find narrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forward
- 3.12 (B). A horizontal beam AB is 4 m long and of constant flexural rigidity. It is rigidly built-in at the left-hand end A and simply supported on a non-yielding support at the right-hand end B. The beam carries Uniformly distributed vertical loading of 18 kN/m over its whole length, together with a vertical downward load of 10KN at 2.5 m from the end A. Sketch the S.F. and B.M. diagrams for the beam, indicating all main values. Cl. Struct. E.] CS.F. 45,10,376 KN, B.M. 186, +36.15 kNm.7arrow_forwardQize f(x) = x + 2x2 - 2 x² + 4x²² - Solve the equation using Newton Raphsonarrow_forward-b±√√b2-4ac 2a @4x²-12x+9=0 27 de febrero de 2025 -b±√√b2-4ac 2a ⑥2x²-4x-1=0 a = 4 b=-12 c=9 a = 2 b = 9 c = \ x=-42±√(2-4 (4) (9) 2(4)) X = (12) ±√44)-(360) 2(108) x = ±√ X = =±√√²-4(2) (1) 2() X = ±√ + X = X = + X₁ = = X₁ = X₁ = + X₁ = = =arrow_forward
- 3.9 (A/B). A beam ABCDE, with A on the left, is 7 m long and is simply supported at Band E. The lengths of the various portions are AB 1-5m, BC = 1-5m, CD = 1 m and DE : 3 m. There is a uniformly distributed load of 15kN/m between B and a point 2m to the right of B and concentrated loads of 20 KN act at 4 and 0 with one of 50 KN at C. (a) Draw the S.F. diagrams and hence determine the position from A at which the S.F. is zero. (b) Determine the value of the B.M. at this point. (c) Sketch the B.M. diagram approximately to scale, quoting the principal values. [3.32 m, 69.8 KNm, 0, 30, 69.1, 68.1, 0 kNm.]arrow_forward4. Verify that V X (aẢ) = (Va) XẢ + aV X Ả where Ả = xyz(x + y + 2) A and a = 3xy + 4zx by carrying out the detailed differentiations.arrow_forward3. For each of the arrow or quiver graphs shown below, determine analytically V°C and V X Č. From these analytical solutions, identify the extrema (+/-) and plot these points on the arrow graph. (a) C = −✰CosxSiny + ŷSinxCosy -π<ׂу<π Ty (b) C = −xSin2y + ŷCos2y x, y<π -π< (c) C = −xCosx + ŷSiny -π< x, y < πarrow_forward
- 7.10 (B/C). A circular flat plate of diameter 305 mm and thickness 6.35 mm is clamped at the edges and subjected to a Uniform lateral pressure of 345 kN/m². Evaluate: (a) the central deflection, (b) the position and magnitude of the maximum radial stress. C6.1 x 10 m; 149.2 MN/m².] 100 200arrow_forward3.15 (B). A beam ABCD is simply supported at B and C with ABCD=2m; BC 4 m. It carries a point load of 60 KN at the free end A, a Uniformly distributed load of 60 KN/m between B and C and an anticlockwise moment of 80 KN m in the plane of the beam applied at the free end D. Sketch and dimension the S.F. and B.M. diagrams, and determine the position and magnitude of the maximum bending moment. CEL.E.] CS.F. 60, 170, 70KN, B.M. 120, +120.1, +80 kNm, 120.1 kNm at 2.83 m to right of 8.7arrow_forward7.1 (A/B). A Uniform I-section beam has flanges 150 mm wide by 8 mm thick and a web 180 mm wide and 8 mm thick. At a certain section there is a shearing force of 120 KN. Draw a diagram to illustrate the distribution of shear stress across the section as a result of bending. What is the maximum shear stress? [86.7 MN/m².arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning


Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY