Translate each word problem to an equation or a system of equations and select a correct translation from equations A–O. A. 12 2 + 12 2 = x 2 B. x ( x + 26 ) = 180 C. 10 , 311 + 5 % x = x D. x + y = 85 , 5 x + 25 y = 13.85 E. x 2 + 4 2 = 12 2 F. 240 x − 18 = 384 x G. x + 5 % x = 10 , 311 H. x 65 + 1 = x 85 I. x 65 + x 85 = 1 J. x + y + z = 180 , y = 4 x , z = x + y − 27 K. 2 x + 2 ( x + 26 ) = 180 L. 384 x − 18 = 240 x M. x + y = 85 , 0.05 x + 0.25 y = 13.85 N. 2 x + 2 ( x + 24 ) = 240 O. 72 x − 3 + 24 x + 3 = 16 Train Speeds. The speed of train A is 18 mph slower than the speed of train B. Train A travels 240 mi in the same time that it takes train B to travel 384 mi. Find the speed of train A.
Translate each word problem to an equation or a system of equations and select a correct translation from equations A–O. A. 12 2 + 12 2 = x 2 B. x ( x + 26 ) = 180 C. 10 , 311 + 5 % x = x D. x + y = 85 , 5 x + 25 y = 13.85 E. x 2 + 4 2 = 12 2 F. 240 x − 18 = 384 x G. x + 5 % x = 10 , 311 H. x 65 + 1 = x 85 I. x 65 + x 85 = 1 J. x + y + z = 180 , y = 4 x , z = x + y − 27 K. 2 x + 2 ( x + 26 ) = 180 L. 384 x − 18 = 240 x M. x + y = 85 , 0.05 x + 0.25 y = 13.85 N. 2 x + 2 ( x + 24 ) = 240 O. 72 x − 3 + 24 x + 3 = 16 Train Speeds. The speed of train A is 18 mph slower than the speed of train B. Train A travels 240 mi in the same time that it takes train B to travel 384 mi. Find the speed of train A.
Solution Summary: The author explains how to determine the system of equations and select the correct translation from the following options.
Translate each word problem to an equation or a system of equations and select a correct translation from equations A–O.
A.
12
2
+
12
2
=
x
2
B.
x
(
x
+
26
)
=
180
C.
10
,
311
+
5
%
x
=
x
D.
x
+
y
=
85
,
5
x
+
25
y
=
13.85
E.
x
2
+
4
2
=
12
2
F.
240
x
−
18
=
384
x
G.
x
+
5
%
x
=
10
,
311
H.
x
65
+
1
=
x
85
I.
x
65
+
x
85
=
1
J.
x
+
y
+
z
=
180
,
y
=
4
x
,
z
=
x
+
y
−
27
K.
2
x
+
2
(
x
+
26
)
=
180
L.
384
x
−
18
=
240
x
M.
x
+
y
=
85
,
0.05
x
+
0.25
y
=
13.85
N.
2
x
+
2
(
x
+
24
)
=
240
O.
72
x
−
3
+
24
x
+
3
=
16
Train Speeds. The speed of train A is 18 mph slower than the speed of train B. Train A travels 240 mi in the same time that it takes train B to travel 384 mi. Find the speed of train A.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY