Thomas' Calculus and Linear Algebra and Its Applications Package for the Georgia Institute of Technology, 1/e
5th Edition
ISBN: 9781323132098
Author: Thomas, Lay
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.6, Problem 9E
A certain experiment produces the data (1, 7.9), (2, 5.4), and (3, −.9). Describe the model that produces a least-squares fit of these points by a function of the form
y = A cos x + B sin x
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use least squares regression to fit polynomials of order 1, 3 and 5 to the data given in table. Compute the correlation coefficient for each fit (Use Gauss elimination with partial pivoting in the solution of linear equation systems). Plot 1st, 3rd, and 5th order polynomial fits and the given discrete data. Comment on which of these curves explain better the variability of given data.
I have a solution at second image but i dont understand where did the functions like "y=2.3021x^3+..." come from? I need a detailed description about it. Thank you
You have obtained measurements of height in inches of 29 female and 81 male students (Studenth) at your university. A regression of the height on a constant and a binary variable (BFemme), which takes a value of one for females and is zero otherwise, yields the following result:
= 71.0 – 4.84×BFemme , R2 = 0.40, SER = 2.0
(0.3) (0.57)
Values in parenthesis are standard errors.
(a) What is the interpretation of the intercept? What is the interpretation of the coefficient of the dummy variable? How tall are females, on average?
(b) Test the hypothesis that females, on average, are shorter than males, at the 1% significance level.
For x={1 2 3 4 5} and y={2 1 4 3 6} use normal equation (c =(ATA)-1ATy) to find with:
a-) linear regression coefficients,
b-) the linear regression equation,
c-) residel sum of squares(RSS)
Chapter 6 Solutions
Thomas' Calculus and Linear Algebra and Its Applications Package for the Georgia Institute of Technology, 1/e
Ch. 6.1 - Let a = [21] and b = [31]. Compute abaa and...Ch. 6.1 - Let c = [4/312/3] and d = [561]. a. Find a unit...Ch. 6.1 - Let W be a subspace of Rn. Exercise 30 establishes...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...
Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - Prob. 12ECh. 6.1 - Find the distance between x = [103] and y = [15].Ch. 6.1 - Find the distance between u = [052] and z = [418].Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - In Exercises 19 and 20, all vectors are in n. Mark...Ch. 6.1 - In Exercises 19 and 20, all vectors are in n. Mark...Ch. 6.1 - Use the transpose definition of the inner product...Ch. 6.1 - Prob. 22ECh. 6.1 - Let u = [251] and v = [746]. Compute and compare...Ch. 6.1 - Verify the parallelogram law for vectors u and v...Ch. 6.1 - Let v = [ab] Describe the set H of vectors [xy]...Ch. 6.1 - Let u = [567], and let W be the set of all x in 3...Ch. 6.1 - Suppose a vector y is orthogonal to vectors u and...Ch. 6.1 - Suppose y is orthogonal to u and v. Show that y is...Ch. 6.1 - Let W = Span {v1,,vp}. Show that if x is...Ch. 6.1 - Let W be a subspace of n, and let W be the set of...Ch. 6.1 - Show that if x is in both W and W, then x = 0.Ch. 6.2 - Let u1= [1/52/5] and u2= [2/51/5]. Show that {u1....Ch. 6.2 - Let y and L be as in Example 3 and Figure 3....Ch. 6.2 - Let U and x be as in Example 6. and let y = [326]....Ch. 6.2 - Let U be an n n matrix with orthonormal columns....Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - Compute the orthogonal projection of [17] onto the...Ch. 6.2 - Compute the orthogonal projection of [11] onto the...Ch. 6.2 - Let y = [23] and u = [47] Write y as the sum of...Ch. 6.2 - Let y = [26] and u = [71] Write y as the sum of a...Ch. 6.2 - Let y = [31] and u = [86] Compute the distance...Ch. 6.2 - Let y = [39] and u = [12] Compute the distance...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 23 and 24, all vectors are in n. Mark...Ch. 6.2 - In Exercises 23 and 24, all vectors are in n. Mark...Ch. 6.2 - Prove Theorem 7. [Hint: For (a), compute |Ux||2,...Ch. 6.2 - Suppose W is a sub space of n spanned by n nonzero...Ch. 6.2 - Let U be a square matrix with orthonormal columns....Ch. 6.2 - Let U be an n n orthogonal matrix. Show that the...Ch. 6.2 - Let U and V be n n orthogonal matrices. Explain...Ch. 6.2 - Let U be an orthogonal matrix, and construct V by...Ch. 6.2 - Show that the orthogonal projection of a vector y...Ch. 6.2 - Let {v1, v2} be an orthogonal set of nonzero...Ch. 6.2 - Prob. 33ECh. 6.2 - Given u 0 in n, let L = Span{u}. For y in n, the...Ch. 6.3 - Let u1 = [714], u2 = [112], x = [916], and W =...Ch. 6.3 - Let W be a subspace of n. Let x and y be vectors...Ch. 6.3 - In Exercises 1 and 2, you may assume that {u1,,...Ch. 6.3 - u1 = [1211], u2 = [2111], u3 = [1121], u4 =...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 11 and 12, find the closest point to...Ch. 6.3 - In Exercises 11 and 12, find the closest point to...Ch. 6.3 - In Exercises 13 and 14, find the best...Ch. 6.3 - In Exercises 13 and 14, find the best...Ch. 6.3 - Let y = [595], u1 = [351], u2 = [321]. Find die...Ch. 6.3 - Let y, v1, and v2 be as in Exercise 12. Find the...Ch. 6.3 - Let y = [481], u1 = [2/31/32/3], u2 = [2/32/31/3],...Ch. 6.3 - Let y = [79], u1 = [1/103/10], and W = Span {u1}....Ch. 6.3 - Let u1 = [112], u2 = [512], and u3 = [001].Note...Ch. 6.3 - Let u1 and u2 be as in Exercise 19, and let u4 =...Ch. 6.3 - In Exercises 21 and 22, all vectors and subspaces...Ch. 6.3 - In Exercises 21 and 22, all vectors and subspaces...Ch. 6.3 - Let A be an m m matrix. Prove that every vector x...Ch. 6.3 - Let W be a subspace of n with an orthogonal basis...Ch. 6.4 - Let W = Span {x1, x2}, where x1 = [111] and x2 =...Ch. 6.4 - Suppose A = QR, where Q is an m n matrix with...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - Find an orthonormal basis of the subspace spanned...Ch. 6.4 - Find an orthonormal basis of the subspace spanned...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - In Exercises 13 and 14, the columns of Q were...Ch. 6.4 - In Exercises 13 and 14, the columns of Q were...Ch. 6.4 - Find a QR factorization of the matrix in Exercise...Ch. 6.4 - Find a QR factorization of the matrix in Exercise...Ch. 6.4 - In Exercises 17 and 18, all vectors and subspaces...Ch. 6.4 - In Exercises 17 and 18, all vectors and subspaces...Ch. 6.4 - Suppose A = QR, where Q is m n and R is n n....Ch. 6.4 - Suppose A = QR, where R is an invertible matrix....Ch. 6.4 - Given A = QR as in Theorem 12, describe how to...Ch. 6.4 - Let u1, , up be an orthogonal basis for a subspace...Ch. 6.4 - Suppose A = QR is a QR factorization of an m n...Ch. 6.4 - [M] Use the Gram-Schmidt process as in Example 2...Ch. 6.4 - [M] Use the method in this section to produce a QR...Ch. 6.5 - Let A = [133151172] and b = [535]. Find a...Ch. 6.5 - What can you say about the least-squares solution...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 5 and 6, describe all least-squares...Ch. 6.5 - In Exercises 5 and 6, describe all least-squares...Ch. 6.5 - Compute the least-squares error associated with...Ch. 6.5 - Compute the least-squares error associated with...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - Let A = [342134], b = [1195], u = [51], and v =...Ch. 6.5 - Let A = [213432], b = [544], u = [45], and v =...Ch. 6.5 - In Exercises 15 and 16, use the factorization A =...Ch. 6.5 - In Exercises 15 and 16, use the factorization A =...Ch. 6.5 - In Exercises 17 and 18, A is an m n matrix and b...Ch. 6.5 - a. If b is in the column space of A, then every...Ch. 6.5 - Let A be an m n matrix. Use the steps below to...Ch. 6.5 - Let A be an m n matrix such that ATA is...Ch. 6.5 - Let A be an m n matrix whose columns are linearly...Ch. 6.5 - Use Exercise 19 to show that rank ATA = rank A....Ch. 6.5 - Suppose A is m n with linearly independent...Ch. 6.5 - Find a formula for the least-squares solution of...Ch. 6.5 - Describe all least-squares solutions of the system...Ch. 6.6 - When the monthly sales of a product are subject to...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - Let X be the design matrix used to find the...Ch. 6.6 - Let X be the design matrix in Example 2...Ch. 6.6 - A certain experiment produces the data (1, 7.9),...Ch. 6.6 - Let x=1n(x1++xn) and y=1n(y1++yn). Show that the...Ch. 6.6 - Derive the normal equations (7) from the matrix...Ch. 6.6 - Use a matrix inverse to solve the system of...Ch. 6.6 - a. Rewrite the data in Example 1 with new...Ch. 6.6 - Suppose the x-coordinates of the data (x1, y1), ,...Ch. 6.6 - Exercises 19 and 20 involve a design matrix X with...Ch. 6.6 - Show that X2=TXTy. [Hint: Rewrite the left side...Ch. 6.7 - Use the inner product axioms to verify the...Ch. 6.7 - Use the inner product axioms to verify the...Ch. 6.7 - Let 2 have the inner product of Example 1, and let...Ch. 6.7 - Let 2 have the inner product of Example 1. Show...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Let 3 have the inner product given by evaluation...Ch. 6.7 - Let 3 have the inner product as in Exercise 9,...Ch. 6.7 - Let p0, p1, and p2 be the orthogonal polynomials...Ch. 6.7 - Find a polynomial p3 such that {p0, p1, p2, p3}...Ch. 6.7 - Let A be any invertible n n matrix. Show that for...Ch. 6.7 - Let T be a one-to-one linear transformation from a...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Given a 0 and b 0, let u=[ab] and v=[ba]. Use...Ch. 6.7 - Let u=[ab] and v=[11]. Use the Cauchy-Schwarz...Ch. 6.7 - Exercises 21-24 refer to V = C[0, 1], with the...Ch. 6.7 - Exercises 21-24 refer to V = C[0, 1], with the...Ch. 6.7 - Compute f for f in Exercise 21. Exercises 21-24...Ch. 6.7 - Compute g for g in Exercise 22. Exercises 21-24...Ch. 6.7 - Let V be the space C[1, 1] with the inner product...Ch. 6.7 - Let V be the space C[2, 2] with the inner product...Ch. 6.8 - Let q1(t) = 1, q2(t) = t, and q3(t) = 3t2 4....Ch. 6.8 - Find the first-order and third-order Fourier...Ch. 6.8 - Find the least-squares line y = 0 + 1x that best...Ch. 6.8 - Suppose 5 out of 25 data points in a weighted...Ch. 6.8 - Fit a cubic trend function to the data in Example...Ch. 6.8 - To make a trend analysis of six evenly spaced data...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - Prob. 7ECh. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - [M] Refer to the data in Exercise 13 in Section...Ch. 6.8 - [M] Let f4 and f5 be the fourth-order and...Ch. 6 - Prob. 1SECh. 6 - Prob. 2SECh. 6 - Let {v1, , vp} be an orthonormal set in n. Verify...Ch. 6 - Let U be an n n orthogonal matrix. Show that if...Ch. 6 - Show that if an n n matrix U satisfies (Ux) (Uy)...Ch. 6 - Show that if U is an orthogonal matrix, then any...Ch. 6 - A Householder matrix, or an elementary reflector,...Ch. 6 - Let T: n n be a linear transformation that...Ch. 6 - Let u and v be linearly independent vectors in n...Ch. 6 - Suppose the columns of A are linearly independent....Ch. 6 - If a, b, and c are distinct numbers, then the...Ch. 6 - Consider the problem of finding an eigenvalue of...Ch. 6 - Use the steps below to prove the following...Ch. 6 - Explain why an equation Ax = b has a solution if...Ch. 6 - Exercises 15 and 16 concern the (real) Schur...Ch. 6 - Let A be an n n matrix with n real eigenvalues,...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Factor each expression completely. 41.28y2+43y48
High School Math 2012 Common-core Algebra 1 Practice And Problem Solvingworkbook Grade 8/9
In the following exercises, multiply the monomials. 138. (14d5)(36d2)
Elementary Algebra
A faucet can fill a sink in 5 minutes. It takes twice as long for the drain to empty the sink. How long will it...
Intermediate Algebra for College Students (7th Edition)
Is there a relationship between wine consumption and deaths from heart disease? The table gives data from 19 de...
College Algebra Essentials
153. A rain gutter is made from sheets of aluminum that are 20 inches wide. As shown in the figure, the edges ...
College Algebra
Consider the damped spring-mass system whose motion is governed by d2ydt2+2dydt+5y=17sin2t, y(0)=2, dydt(0)=0. ...
Differential Equations and Linear Algebra (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- If your graphing calculator is capable of computing a least-squares sinusoidal regression model, use it to find a second model for the data. Graph this new equation along with your first model. How do they compare?arrow_forwardThe least squares regression line for a set of data is calculated to be y = 24.8 + 3.41x. (a) One of the points in the data set is (4, 37). Calculate the predicted value. (b) For the point in part (a), calculate the residual.arrow_forwardConsider a model with an interaction term between being female and being married. The dependent variable is the log of the hourly wage: log(wage) = 0.151 - 0.038 female + 0.1 married - 0.301 female* married + 0.079 educ + 0.027 exper+0.029 tenure (0.072) (0.056) (0.055) (0.007) (0.005) (0.007) n = 536, R2 = 0.461 Numbers in parantheses are standard errors of coefficients. Given the estimation result and the observation number fill in the blanks below which aim at discussing the statistical significance of variables. The test statistic of the interaction term is The critical value at 1% significance level is Then the interaction term statistically significant at 1% significance level. (Hint: to fill the blank make a choice between "is" and "is not".)arrow_forward
- The following estimated regression equation was developed for a model involving two independent variables. ý = 40.7 + 8.63x, + 2.71.x, After x 2 was dropped from the model, the least squares method was used to obtain an estimated regression equation involving only X 1 as an independent variable. ŷ = 42.0 + 9.01x a. In the two independent variable case, the coefficient x 1 represents the expected change in Select v corresponding to a one unit increase in Select v when Select v is held constant. In the single independent variable case, the coefficient x 1 represents the expected change in Select v corresponding to a one unit increase in Select v b. Could multicollinearity explain why the coefficient of x 1 differs in the two models? Assume that x1 and x2 are correlated. Selectarrow_forwardExercise 21. Assume that we have observed paired data 21,...,n and y₁,..., yn, and we want to describe these data using the model Y₁ = y + E, where e, are i.i.d. with E(₁) = 0. a) Using the least squares method, determine an estimator for the parameter 7. b) Show that your estimator is unbiased.arrow_forwardThe relationship between number of beers consumed (x) and blood alcohol content (y) was studied in 16 male college students by using least squares regression. The following regression equation was obtained from this study: y-hat = -0.0127 + 0.0180x The above equation implies that: each beer consumed increases blood alcohol by .0127 on average it takes 1.8 beers to increase blood alcohol content by .01 After consuming 1 beer, blood alcohol equals .0180. each beer consumed increases blood alcohol by 0.018arrow_forward
- Use the general equation for the least square regression line to show that this line always passes through the point (x,y) * bars above the x and y.That is, set x=x(with a bar above the x) and show that the line predicts that y=y (with a bar above the y).arrow_forwardThe data in the accompanying table include the appraised value, land area of the property in acres, and age, in years, for a small sample of 30 single-family homes in a small city. Perform a multiple regression analysis to predict appraised value based on land area of the property X1 and age, in years, X2 and determine the VIF for each independent variable in the model. Is there reason to suspect the existence of collinearity? Determine the VIF for each independent variable in the model.arrow_forwardA regression and correlation analysis resulted in the following information regarding a dependent variable (y) and an independent variable (x). Σx = 90 Σ(y - )(x - ) = 466 Σy = 170 Σ(x - )2 = 234 n = 10 Σ(y - )2 = 1434 SSE = 505.98 The least squares estimate of the slope or b1 equals a. .923. b. 1.991. c. -1.991. d. -.923.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY