EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220100257063
Author: BEER
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.6, Problem 79P
To determine
Show that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
you are asked to:
a. Derive the equations for V and M for each segment.
b. Draw the shear and moment diagram.
c. Vmax
e. Mmax and location
A beam has a rectangular cross-section and is subjected to the stress the distribution is shown in Fig. a. Determine the internal moment M at the section caused by the stress distribution (a) using the flexure formula, (b) by finding the resultant of the stress distribution using basic principles.
Compute the power transmitted in HP by the shaft rotating 1200 rpm and subjected to torsional moment of 1200 MN.
A. 202B. 252C. 150D. 171
Chapter 6 Solutions
EBK MECHANICS OF MATERIALS
Ch. 6.2 - Three full-size 50 100-mm boards are nailed...Ch. 6.2 - For the built-up beam of Prob. 6.1, determine the...Ch. 6.2 - Three boards, each 2 in. thick, are nailed...Ch. 6.2 - A square box beam is made of two 20 80-mm planks...Ch. 6.2 - The American Standard rolled-steel beam shown has...Ch. 6.2 - The beam shown is fabricated by connecting two...Ch. 6.2 - A column is fabricated by connecting the...Ch. 6.2 - The composite beam shown is fabricated by...Ch. 6.2 - 6.9 through 6.12 For beam and loading shown,...Ch. 6.2 - 6.9 through 6.12 For beam and loading shown,...
Ch. 6.2 - 6.9 through 6.12 For beam and loading shown,...Ch. 6.2 - 6.9 through 6.12 For beam and loading shown,...Ch. 6.2 - 6.13 and 6.14 For a beam having the cross section...Ch. 6.2 - 6.13 and 6.14 For a beam having the cross section...Ch. 6.2 - For a timber beam having the cross section shown,...Ch. 6.2 - Two steel plates of 12 220-mm rectangular cross...Ch. 6.2 - Two W8 31 rolled sections may be welded at A and...Ch. 6.2 - For the beam and. loading shown, determine the...Ch. 6.2 - Fig. P6.19 6.19 A timber beam AB of length L and...Ch. 6.2 - A timber beam AB of Length L and rectangular cross...Ch. 6.2 - 6.21 and 6.22 For the beam and loading shown,...Ch. 6.2 - 6.21 and 6.22 For the beam and loading shown,...Ch. 6.2 - 6.23 and 6.24 For the beam and loading shown,...Ch. 6.2 - 6.23 and 6.24 For the beam and loading shown,...Ch. 6.2 - 6.25 through 6.28 A beam having the cross section...Ch. 6.2 - 6.25 through 6.28 A beam having the cross section...Ch. 6.2 - Prob. 27PCh. 6.2 - 6.25 through 6.28 A beam having the cross section...Ch. 6.5 - The built-up timber beam shown is subjected to a...Ch. 6.5 - The built-up beam shown is made by gluing together...Ch. 6.5 - The built-up beam was made by gluing together...Ch. 6.5 - Several wooden planks are glued together to form...Ch. 6.5 - The built-up wooden beam shown is subjected to a...Ch. 6.5 - Knowing that a W360 122 rolled-steel beam is...Ch. 6.5 - 6.35 and 6.36 An extruded aluminum beam has the...Ch. 6.5 - 6.35 and 6.36 An extruded aluminum beam has the...Ch. 6.5 - Knowing that a given vertical shear V causes a...Ch. 6.5 - The vertical shear is 1200 lb in a beam having the...Ch. 6.5 - The vertical shear is 1200 lb in a beam having the...Ch. 6.5 - 6.40 and 6.47 The extruded aluminum beam has a...Ch. 6.5 - Prob. 41PCh. 6.5 - Prob. 42PCh. 6.5 - Three planks are connected as shown by bolts of...Ch. 6.5 - A beam consists of three planks connected as shown...Ch. 6.5 - A beam consists of five planks of 1.5 6-in. cross...Ch. 6.5 - Four L102 102 9.5 steel angle shapes and a 12 ...Ch. 6.5 - A plate of 14-in. thickness is corrugated as shown...Ch. 6.5 - Prob. 48PCh. 6.5 - An extruded beam has the cross section shown and a...Ch. 6.5 - Prob. 50PCh. 6.5 - The design of a beam calls for connecting two...Ch. 6.5 - The cross section of an extruded beam is a hollow...Ch. 6.5 - Prob. 53PCh. 6.5 - Prob. 54PCh. 6.5 - Prob. 55PCh. 6.5 - 6.56 and 6.57 A composite beam is made by...Ch. 6.5 - 6.56 and 6.57 A composite beam is made by...Ch. 6.5 - Prob. 58PCh. 6.5 - Prob. 59PCh. 6.5 - Prob. 60PCh. 6.6 - 6.61 through 6.64 Determine the location of the...Ch. 6.6 - 6.61 through 6.64 Determine the location of the...Ch. 6.6 - 6.61 through 6.64 Determine the location of the...Ch. 6.6 - Prob. 64PCh. 6.6 - 6.65 through 6.68 An extruded beam has the cross...Ch. 6.6 - 6.65 through 6.68 An extruded beam has the cross...Ch. 6.6 - 6.65 through 6.68 An extruded beam has the cross...Ch. 6.6 - 6.65 through 6.68 An extruded beam has the cross...Ch. 6.6 - 6.69 through 6.74 Determine the location of the...Ch. 6.6 - Prob. 70PCh. 6.6 - Prob. 71PCh. 6.6 - Prob. 72PCh. 6.6 - Prob. 73PCh. 6.6 - Prob. 74PCh. 6.6 - Prob. 75PCh. 6.6 - 6.75 and 6.76 A thin-walled beam has the cross...Ch. 6.6 - 6.77 and 6.78 A thin-walled beam of uniform...Ch. 6.6 - Prob. 78PCh. 6.6 - Prob. 79PCh. 6.6 - Prob. 80PCh. 6.6 - Prob. 81PCh. 6.6 - Prob. 82PCh. 6.6 - Prob. 83PCh. 6.6 - Prob. 84PCh. 6.6 - Prob. 85PCh. 6.6 - Solve Prob. 6.85, assuming that the thickness of...Ch. 6.6 - Prob. 87PCh. 6.6 - Prob. 88PCh. 6 - Three boards are nailed together to form the beam...Ch. 6 - For the beam and loading shown, consider section...Ch. 6 - For the wide-flange beam with the loading shown,...Ch. 6 - For the beam and loading shown, consider section...Ch. 6 - The built-up timber beam is subjected to a 1500-lb...Ch. 6 - Knowing that a given vertical shear V causes a...Ch. 6 - Three planks are connected as shown by bolts of...Ch. 6 - Three 1 18-in. steel plates are bolted to four L6...Ch. 6 - The composite beam shown is made by welding C200 ...Ch. 6 - Prob. 98RPCh. 6 - A thin-walled beam of uniform thickness has the...Ch. 6 - Determine the location of the shear center O of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Pole AB is 12m. long and its weight W = 35kN. It is being lifted using BC and BD. When the pole is tilted at an angle of 60° from the x-axis, the resultant force acts at point A. 'p 2.6 m 3 m 4.5 m 3m 1. Find the tensile force (kN) in cable BC. В. 21.6 A. 22.5 C. 26.1 D. 28.2 2. Find the tensile force (kN) in cable BD. А. 13.1 В. 11.3 С. 14.5 D. 16.1 3. What is the value of the resultant (kN) acting at point A. В. 65.9 А. 69.5 C. 90.6 D. 56.9arrow_forward4. For the braced beam and loading shown; (a) draw free body diagram, (b) determine the magnitude force of member BE, and (c) determine the magnitude of the force on the support A | 50 N 20 KNAM D 15 m * 1m 3 m 30° Earrow_forwardThe thin-walled Z-section beam as shown in Fig.(1) when the shear load S_y=100N, applied in the plane of the web BC. The second moments of area of the section about the x and y axes are; S₂ " a. Ix = 41666.66 mm4 ly 10416.66mm 4 - b. Ix=40066.67 mmª, 50mm Iy = 30416.67mm4 c. Ix 11633.61 mm², Iy = 604110.61mm 4 d. None of the above SA Fig.(1) B G SB 1mm 25mmarrow_forward
- 5.16 The box beam is made by nailing four 2-in. by 8-in. planks together as shown. (a) Show that the moment of inertia of the cross-sectional area about the neutral axis is 981.3 in.. (b) Given that wo 300 lb/ft, find the largest allowable force P if the bending stress is limited to 1400 psi. 8 in.2 in. 8 in. 9 f 3 ft 2 in. FIG. P5.16arrow_forwardThe distance between point A and the shear force VAB=0 * a. 1.9074m b. 1.9074mm c. 1.8074m d. 1.8074mmarrow_forward15. Given a front hand brake of a bicycle. The applied force, P = 70 N and the equivalent area and length of the cable is 1.02 mm² and 460 mm respectively. If the elongation of the cable is found to be 0.225 mm, find the normal stress in the cable. a. 137 b. 153 Brake cable, L= 460 mm a. 782 b. 784 37.5 mm/A 50 mm Hand brake pivot A -100 mm- C. d. 168 195 P (Resultant of distributed pressure) 16. How much should an 80-kg person weigh (in Newtons) if he is on top of Mt. Kilimanjaro, which is at 5890 m above sea level? The mass and radius of the earth are 5.9742 x 1024 kg and 6378 km, respectively. Use a universal gravitational constant of 6.67 x 10-¹1 m³/kg-s² C. 786 d. 788 Uniform hand brake pressurearrow_forward
- 7.11 A girder ABCDE bears on a wall for a length BC and is prevented from overturning by a holding-down bolt at A. The packing under BC is so arranged that the pressure over the bearing is uniformly distributed and the 30 kN load may also be taken as a uniformly distributed load. Neglecting the mass of the beam, draw its bending moment and shearing force diagrams. (Cambridge)arrow_forwardThe lid of a roof scuttle weighs 93-lb. It is hinged at corners A and B and maintained in the desired position by a rod CD pivoted at C, a pin at end of D of the rod fits into one of several holes drilled in the edge of the lid. Assume that the hinge at B does not exert any axial thrust. The value of a = 50°. y 26 in. D 15 in 7 in. 32 in. For the position shown, determine the magnitude of force exerted by rod CD. (You must provide an answer before moving to the next part.) The magnitude of force exerted by rod CD is lb.arrow_forwardPlease help me understand the solving i don't really know how to solve nor how to answer this. Part 1... Please refer to the image... Part 2 Determine the shear force acting at each of the following locations: (a) x = 4.25- (i.e., just to the left of point B.) (b) x = 4.25+ (i.e., just to the right of point B.) (c) x = 9.25-(i.e., just to the left of point C) (d) x = 9.25+ (i.e., just to the right of point C) Answer: (a) V= ________________kN (b) V= ________________kN (c) V= ________________kN (d) V= ________________kN Part 3 Determine the bending-moment acting at each of the following locations: (a) x = 4.25-(i.e.. just to the left of point B) (b) x = 4.25+ (i.e.. just to the right of point B) (c) x = 9.25 m (i.e., at support C) (d) x = 8.25 m Answer: (a) M= ________________kN-m (b) M= ________________kN-m (c) M= ________________kN-m (d) M= ________________kN-m Part 4: Use your bending-moment diagram to determine the maximum positive bending moment, Mmax, pos, and the…arrow_forward
- Subject: mechanicalarrow_forward5.86 The cast iron inverted T-section supports two concentrated loads of magnitude P. The working stresses are 48 MPa in tension, 140 MPa in compression, and 30 MPa in shear. (a) Show that the neutral axis of the cross section is located at d ¼ 48:75 mm and that the moment of inertia of the cross-sectional area about this axis is I ¼ 11:918 106 mm4. (b) Find the maximum allowable value of P.arrow_forwardUse the graphical method to construct the shear-force and bending-moment diagrams for the beam shown. Let a=4.0 ft, b=8.0 ft, c=4.0 ft, d=3.0 ft, w = 6.5 kips/ft and P = 45 kips. Construct the shear-force and bending-moment diagrams on paper and use the results to answer the questions in the subsequent parts of this GO exercise. A a B a b For this loading, calculate the reaction forces Ay and Ey acting on the beam. Positive values for the reactions are indicated by the directions of the red arrows shown on the free-body diagram below. (Note: Since Ax = 0, it has been omitted from the free-body diagram.) W B W ÎÎÎÎÎÎ b C C d E d E X Ey Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license