Use the following matrix for Exercises 9–17:
15. Evaluate |A| by expanding down the third column.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
COLLEGE ALGEBRA (PRINT UPGRADE)
- In Exercises 19–22, evaluate the (4X4) determinants. Theorems 6–8 can be used to simplify the calculations.arrow_forwardIn Exercises 5–8, use the definition of Ax to write the matrix equation as a vector equation, or vice versa. 5. 5 1 8 4 -2 -7 3 −5 5 -1 3 -2 = -8 - [18] 16arrow_forwardIn Exercises 13–18, perform each matrix row operation and write the new matrix. -6 4| 10 13. 1 5 -5 3 4 7 -12 6 9 40 3. 14. 1 -4 7|4 2 0 -1 |7 1 3 -3 15. 1 -3R, + R, -2 -1 -9- -9- 16. 3 3 -1 10 -3R + R2 1 3 5 1 -1 1 1 3. 1 -2 -1 17. 2 4| 11 -2R, + R3 5 1 6. -5R, + R4 1 -5 2 -2 4 -3 -1 18. 3 2 -1 -3R + R3 -4 4 2-3 4R, + R4 -len すす 2. 1. 2. 1. 3.arrow_forward
- 2. Assume that all the operations are properly defined, solve the following equation for the unknown matrix X: ((A+X)" – 1) = B Use the result to evaluate X using the matrices A and 6 -2 B =arrow_forwarduse the following matrix D= [5 3] D= [4 6] write the negative of Darrow_forwardFind the sıze of the matrix 0. 7.arrow_forward
- Solve the following linear equations using the 5 methods: (Gaussian Elimination, Gauss-Jordan Elimination, LU Factorization, Inverse Matrix and Cramer's Rule). Show your complete solutions. b. 2x1 — 6х, — Хз 3D — 38 -3x1 – x2 + 7x3 = -34 -8x1 + x2 – 2x3 = -20arrow_forward1.3.5 Write f= x + 10x,x2 + x as a difference of squares, and f= xí+ 10x1x2 + 30x as a sum of squares. What symmetric matrices correspond to these quadratic forms by f = x' Ax?arrow_forwardCalculate (a + b) ·ở where a = (-1,2, 3), 6= (1, 1, 1) and = (2, -2, 1) %3Darrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning