Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)
6th Edition
ISBN: 9781337515610
Author: Crauder
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.5, Problem 9E
To determine
(a)
To write:
The equation of change for Pacific sardines.
To determine
(b)
To find:
The graph of
To determine
(c)
To find:
The values of
To determine
(d)
To find:
The condition of population of
To determine
(e)
To find:
The level of population when the population will be growing at fastest rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)
Ch. 6.1 - ReminderRound all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...Ch. 6.1 - Reminder Round all answers to two decimal places...
Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Velocity What is the rate of change in directed...Ch. 6.1 - Sign of VelocityWhen directed distance is...Ch. 6.1 - Sign of VelocityWhen the graph of directed...Ch. 6.1 - Constant VelocityWhen velocity is constant, what...Ch. 6.1 - Constant Velocity When the graph of directed...Ch. 6.1 - Prob. 6SBECh. 6.1 - Prob. 7SBECh. 6.1 - Prob. 8SBECh. 6.1 - Prob. 9SBECh. 6.1 - Prob. 10SBECh. 6.1 - Change in Direction A graph of directed distance...Ch. 6.1 - Prob. 12SBECh. 6.2 - Prob. 1ECh. 6.2 - Reminder Round all answers to two decimal places...Ch. 6.2 - Reminder Round all answers to decimal places...Ch. 6.2 - Reminder Round all answers to decimal places...Ch. 6.2 - Reminder Round all answers to decimal places...Ch. 6.2 - Reminder Round all answers to decimal places...Ch. 6.2 - Reminder Round all answers to decimal places...Ch. 6.2 - Prob. 8ECh. 6.2 - Reminder Round all answers to decimal places...Ch. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - ReminderRound all answers to two decimal places...Ch. 6.2 - Reminder Round all answers to two decimal places...Ch. 6.2 - ReminderRound all answers to two decimal places...Ch. 6.2 - Prob. 15ECh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - SKILL BUILDING EXERCISES Marginal Cost: Let C(n)...Ch. 6.2 - SKILL BUILDING EXERCISES Marginal Profit: Your...Ch. 6.2 - SKILL BUILDING EXERCISES Buying for the Short...Ch. 6.2 - SKILL BUILDING EXERCISES Buying a company: You are...Ch. 6.2 - Meaning Of Rate Change: What is the common term...Ch. 6.2 - A Mathematical Term: If f=f(x), then we use dfdx...Ch. 6.2 - Sign of the Derivative: Suppose f=f(x). What is...Ch. 6.2 - Prob. 8SBECh. 6.2 - Prob. 9SBECh. 6.2 - Prob. 10SBECh. 6.2 - Prob. 11SBECh. 6.2 - Prob. 12SBECh. 6.2 - Prob. 13SBECh. 6.2 - Prob. 14SBECh. 6.2 - Prob. 15SBECh. 6.2 - Prob. 16SBECh. 6.3 - ReminderRound all answers to two decimal places...Ch. 6.3 - ReminderRound all answers to two decimal places...Ch. 6.3 - Reminder Round all answers to two decimal places...Ch. 6.3 - Reminder Round all answers to two decimal places...Ch. 6.3 - ReminderRound all answers to two decimal places...Ch. 6.3 - ReminderRound all answers to two decimal places...Ch. 6.3 - ReminderRound all answers to two decimal places...Ch. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - ReminderRound all answers to two decimal places...Ch. 6.3 - Prob. 12ECh. 6.3 - Rate of Change for a Linear Function If f is the...Ch. 6.3 - Rate of Change for a Linear Function If f is the...Ch. 6.3 - Rate of Change from Data Suppose f=f(x) satisfies...Ch. 6.3 - Rate of Change from Data Suppose f=f(x) satisfies...Ch. 6.3 - Prob. 5SBECh. 6.3 - Prob. 6SBECh. 6.3 - Estimating Rates of Change By direct calculation,...Ch. 6.3 - Estimating Rates of Change with the CalculatorMake...Ch. 6.3 - Prob. 9SBECh. 6.3 - Prob. 10SBECh. 6.3 - Prob. 11SBECh. 6.3 - Prob. 12SBECh. 6.3 - Prob. 13SBECh. 6.3 - Prob. 14SBECh. 6.4 - ReminderRound all answers to two decimal places...Ch. 6.4 - Reminder Round all answers to two decimal places...Ch. 6.4 - Reminder Round all answers to two decimal places...Ch. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 1SBECh. 6.4 - Prob. 2SBECh. 6.4 - Prob. 3SBECh. 6.4 - New Equation of Change? The tax liability T in...Ch. 6.4 - Prob. 5SBECh. 6.4 - Prob. 6SBECh. 6.4 - Prob. 7SBECh. 6.4 - Prob. 8SBECh. 6.4 - Prob. 9SBECh. 6.4 - Prob. 10SBECh. 6.4 - A Leaky BalloonA balloon leaks air changes volume...Ch. 6.4 - Prob. 12SBECh. 6.4 - Solving an Equation of Change Solve the equation...Ch. 6.4 - Prob. 14SBECh. 6.4 - Filling a Tank The water level in a tank rises...Ch. 6.4 - Solving an Equation of Change Solve the equation...Ch. 6.5 - Reminder Round all answers to two decimal places...Ch. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 1SBECh. 6.5 - Prob. 2SBECh. 6.5 - Prob. 3SBECh. 6.5 - Prob. 4SBECh. 6.5 - Prob. 5SBECh. 6.5 - Prob. 6SBECh. 6.5 - WaterWater flows into a tank, and a certain part...Ch. 6.5 - Prob. 8SBECh. 6.5 - Prob. 9SBECh. 6.5 - Prob. 10SBECh. 6.5 - Prob. 11SBECh. 6.5 - Prob. 12SBECh. 6.5 - Equation of ChangeFor the equation of change...Ch. 6.5 - Prob. 14SBECh. 6.CR - Prob. 1CRCh. 6.CR - Prob. 2CRCh. 6.CR - Prob. 3CRCh. 6.CR - Prob. 4CRCh. 6.CR - Prob. 5CRCh. 6.CR - Prob. 6CRCh. 6.CR - Prob. 7CRCh. 6.CR - Prob. 8CRCh. 6.CR - Prob. 9CRCh. 6.CR - Prob. 10CRCh. 6.CR - Prob. 11CRCh. 6.CR - Prob. 12CRCh. 6.CR - Prob. 13CRCh. 6.CR - Prob. 14CRCh. 6.CR - Prob. 15CRCh. 6.CR - Prob. 16CRCh. 6.CR - Prob. 17CRCh. 6.CR - Prob. 18CRCh. 6.CR - Reminder Round all answers to two decimal places...Ch. 6.CR - Prob. 20CR
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- What is the carrying capacity for a population modeled by the logistic equation P(t)=250,0001+499e0.45t ? initial population for the model?arrow_forwardGrowth Rate Versus Weight Ecologists have studied how a populations intrinsic exponential growth rate r is related to the body weight W for herbivorous mammals. In table 5.2, W is the adult weight measured in pounds, and r is growth rate per year. Animal Weight W r Short-tailed vole 0.07 4.56 Norway rat 0.7 3.91 Rue deer 55 0.23 White-tailed deer 165 0.55 American elk 595 0.27 African elephant 8160 0.06 Find a formula that models r as a power function of W, and draw a graph of this function.arrow_forwardThe table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forward
- Long-Term Data and the Carrying Capacity This is a continuation of Exercise 13. Ideally, logistic data grow toward the carrying capacity but never go beyond this limiting value. The following table shows additional data on paramecium cells. t 12 13 14 15 16 17 18 19 20 N 610 513 593 557 560 522 565 517 500 a. Add these data to the graph in part b of Exercise 13. b. Comment on the relationship of the data to the carrying capacity. Paramecium Cells The following table is adapted from a paramecium culture experiment conducted by Cause in 1934. The data show the paramecium population N as a function of time t in days. T 2 3 5 6 8 9 10 11 N 14 34 94 189 330 416 507 580 a. Use regression to find a logistic model for this population. b. Make a graph of the model you found in part a. c. According to the model you made in part a, when would the population reach 450?arrow_forwardSpecial Rounding Instructions When you perform logistic regression, round the r value to three decimal places and the other parameters to two decimal places. Round all answers to two decimal places unless other-wise indicated. Fluorescent Bulbs Compact fluorescent light bulbs save energy when compared with traditional incandescent bulbs. Our green energy campaign includes efforts to get local residents to exchange their incandescent bulbs fur fluorescent bulbs. Initially 200 households make the change. Market studies suggest that, in the absence of limiting factors, we could increase that number by 25 each month. In our target area, there are 250,000 households, which we take as the limiting value. Make a logistic model that gives the number of households converting to fluorescent bulbs after t months.arrow_forwardModeling Human Height with a Logistic Function A male child is 21inches long at birth and grows to an adult height of 73inches. In this exercise, we make a logistic model of his height as a function of age. a. Use the given information to find K and b for the logistic model. b. Suppose he reaches 95 of his adult height at age 16. Use this information and that from part a to find r. Suggestion: You will need to use either the crossing-graphs method or some algebra involving the logarithm. c. Make a logistic model for his height H, in inches, as a function of his age t, in years. d. According to the logistic model, at what age is he growing the fastest? e. Is your answer to part d consistent with your knowledge of how humans grow?arrow_forward
- Special Rounding Instructions When you perform logistic regression, round the r value to three decimal places and the other parameters to two decimal places. Round all answers to two decimal places unless other-wise indicated. An Epidemic In a city of half a million, there are initially 800 cases of a particularly virulent strain of flu. The Centers for Disease Control and Prevention in Atlanta claims that the cumulative number of infections with this flu strain will increase by 40 per week if there are no limiting factors. Make a logistic model of the potential cumulative number of cases of flu as a function of weeks from initial outbreak, and determine how long it will be before 100, 000 people are infected.arrow_forwardSpecial Rounding Instructions When you perform logistic regression, round the r value to three decimal places and the other parameters to two decimal places. Round all answers to two decimal places unless other-wise indicated. African Bees There are 3600 commercial bee hives in a region threatened by African bees. Today African bees have taken over 50 hives. Experience in other areas shows that, in the absence of limiting factors, the African bees will increase the number of hives they take over by 30 each year. Make a logistic model that shows the number of hives taken over by African bees after t years, and determine how long it will be before 1800 hives are affected.arrow_forwardPopulation The table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forward
- The Decibel scale Exercise S-7 through S-10 refer to the decibel scale. If one sound has a relative intensity one-tenth that of another, how do their decibel levels compare?arrow_forwardBuffalo: Waterton Lakes National Park of Canada, where the Great Plains dramatically meet the Rocky Mountains in Alberta, has a migratory buffalo bison herd that spends falls and winters in the park. The herd is currently managed and so kept small; however, if it were unmanaged and allowed to grow, then the number N of buffalo in the herd could be estimated by the logistic formula N=3151+14e0.23t Here t is the number of years since the beginning of 2002, the first year the herd is unmanaged. a. Make a graph of N versus t covering the next 30 years of the herds existance corresponding to dates up to 2032. b. How many buffalo are in the herd at the beginning of 2002? c. When will the number of buffalo first exceed 300?. d. How many buffalo will there eventually be in the herd? e. When is the graph of N, as a function of t, concave up? When is it concave down? What does this mean in terms of the growth of the buffalo herd?.arrow_forwardWhat is the y -intercept of the logistic growth model y=c1+aerx ? Show the steps for calculation. What does this point tell us about the population?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY