Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.5, Problem 62E
To determine
Show that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let x1 and x1 be independent standard normal random variables. If Y1= x1 + 2x2 and Y2 = 2x1 - x2, find Fy1,y2(1,2)
Let X1, X2, X3 be random variables each having a mean u and variance o.
Further, Cov(X1, X2) = 2, Cov(X1.X3) = 3 and Cov(X2, X3) = 1
Define U = 2X1 – X2 + 4 X3
Solve for the mean and standard deviation of U.
Q2: (b) Let X₁, X2, X3 be uncorrelated random variables, having the same
variance o². Consider the linear transformations Y₁ = X₁ + X₂,
X2 + X3. Find the correlations of Y₁, Y;
i,
Y₂ = X₁ + X3 and Y3
for i + j.
=
Chapter 6 Solutions
Mathematical Statistics with Applications
Ch. 6.3 - Let Y be a random variable with probability...Ch. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - The amount of flour used per day by a bakery is a...Ch. 6.3 - Prob. 5ECh. 6.3 - The joint distribution of amount of pollutant...Ch. 6.3 - Suppose that Z has a standard normal distribution....Ch. 6.3 - Assume that Y has a beta distribution with...Ch. 6.3 - Prob. 9ECh. 6.3 - The total time from arrival to completion of...
Ch. 6.3 - Suppose that two electronic components in the...Ch. 6.3 - Prob. 12ECh. 6.3 - If Y1 and Y2 are independent exponential random...Ch. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - A member of the Pareto family of distributions...Ch. 6.3 - Prob. 19ECh. 6.3 - Let the random variable Y possess a uniform...Ch. 6.3 - Prob. 21ECh. 6.4 - Prob. 23ECh. 6.4 - In Exercise 6.4, we considered a random variable Y...Ch. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Let Y have a uniform (0, 1) distribution. Show...Ch. 6.4 - Prob. 29ECh. 6.4 - A fluctuating electric current I may be considered...Ch. 6.4 - The joint distribution for the length of life of...Ch. 6.4 - Prob. 32ECh. 6.4 - The proportion of impurities in certain ore...Ch. 6.4 - A density function sometimes used by engineers to...Ch. 6.4 - Prob. 35ECh. 6.4 - Refer to Exercise 6.34. Let Y1 and Y2 be...Ch. 6.5 - Let Y1, Y2,, Yn be independent and identically...Ch. 6.5 - Let Y1 and Y2 be independent random variables with...Ch. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - A type of elevator has a maximum weight capacity...Ch. 6.5 - Prob. 43ECh. 6.5 - Prob. 44ECh. 6.5 - The manager of a construction job needs to figure...Ch. 6.5 - Suppose that Y has a gamma distribution with =...Ch. 6.5 - A random variable Y has a gamma distribution with ...Ch. 6.5 - Prob. 48ECh. 6.5 - Let Y1 be a binomial random variable with n1...Ch. 6.5 - Let Y be a binomial random variable with n trials...Ch. 6.5 - Prob. 51ECh. 6.5 - Prob. 52ECh. 6.5 - Let Y1,Y2,,Yn be independent binomial random...Ch. 6.5 - Prob. 54ECh. 6.5 - Customers arrive at a department store checkout...Ch. 6.5 - The length of time necessary to tune up a car is...Ch. 6.5 - Prob. 57ECh. 6.5 - Prob. 58ECh. 6.5 - Prob. 59ECh. 6.5 - Prob. 60ECh. 6.5 - Prob. 61ECh. 6.5 - Prob. 62ECh. 6.6 - In Example 6.14, Y1 and Y2 were independent...Ch. 6.6 - Refer to Exercise 6.63 and Example 6.14. Suppose...Ch. 6.6 - Prob. 65ECh. 6.6 - Prob. 66ECh. 6.6 - Prob. 67ECh. 6.6 - Prob. 68ECh. 6.6 - Prob. 71ECh. 6 - Let Y1 and Y2 be independent and uniformly...Ch. 6 - As in Exercise 6.72, let Y1 and Y2 be independent...Ch. 6 - Let Y1, Y2,, Yn be independent, uniformly...Ch. 6 - Prob. 75SECh. 6 - Prob. 76SECh. 6 - Prob. 77SECh. 6 - Prob. 78SECh. 6 - Refer to Exercise 6.77. If Y1,Y2,,Yn are...Ch. 6 - Prob. 80SECh. 6 - Let Y1, Y2,, Yn be independent, exponentially...Ch. 6 - Prob. 82SECh. 6 - Prob. 83SECh. 6 - Prob. 84SECh. 6 - Let Y1 and Y2 be independent and uniformly...Ch. 6 - Prob. 86SECh. 6 - Prob. 87SECh. 6 - Prob. 88SECh. 6 - Let Y1, Y2, . . . , Yn denote a random sample from...Ch. 6 - Prob. 90SECh. 6 - Prob. 91SECh. 6 - Prob. 92SECh. 6 - Prob. 93SECh. 6 - Prob. 94SECh. 6 - Prob. 96SECh. 6 - Prob. 97SECh. 6 - Prob. 98SECh. 6 - Prob. 99SECh. 6 - The time until failure of an electronic device has...Ch. 6 - Prob. 101SECh. 6 - Prob. 103SECh. 6 - Prob. 104SECh. 6 - Prob. 105SECh. 6 - Prob. 106SECh. 6 - Prob. 107SECh. 6 - Prob. 108SECh. 6 - Prob. 109SECh. 6 - Prob. 110SECh. 6 - Prob. 111SECh. 6 - Prob. 112SECh. 6 - Prob. 113SECh. 6 - Prob. 114SECh. 6 - Prob. 115SECh. 6 - Prob. 116SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Let X1 and X2 be independent chi-squared random variables with r1 and r2 degrees of freedom, respectively. Show that, (a) U = X1/(X1+X2) has a beta distribution with alpha = r1/2 and beta = r2/2. (b) V = X2/(X1+X2) has a beta distribution with alpha = r2/2 and beta = r1/2arrow_forwardLet X be a random variable such that E(X) = 5 and V(X) = 4. The mean and the variance of 3X+4 are equal to: E(3X+4)=13 and V(3X+4)= 54 E(3X+4)=19 and V(3X+4)= 36 None of these E(3X+4)=16 and V(3X+4)= 72arrow_forwardLet X1,...,Xn be iid random variables with expected value 0, variance 1, and covariance Cov [Xi,Xj] = ρ, for i≠j. Use Theorem of linearity of expectation to find the expected value and variance of the sum Y = X1 +...+Xn.arrow_forward
- Let X1, X2, and.X3 be independent and normally distributed random variables with E(X1) 4, E(X2) = 3, E(X3) = 2, Var(X1) = 1, Var(X2) = 5, Var(X3) = 2. Let Y = 2X1 + X2 – 3X3. Find 2. the distribution of Y.arrow_forwardLet X1 and X2 be independent random variables for which P(Xi = 1) = 2/5 and P(Xi = 2) = 3/5 . Define U = X1 + X2 and V = X1 x X2. Calculate Cor(U, V )arrow_forward*6.62 Let Y₁ and Y₂ be independent normal random variables, each with mean 0 and variance o². Define U₁ = Y₁ + Y₂ and U₂ = Y₁ - Y₂. Show that U₁ and U₂ are independent normal random variables, each with mean 0 and variance 20². [Hint: If (U₁, U₂) has a joint moment-generating function m (1₁, 12), then U₁ and U₂ are independent if and only if m(1₁, 1₂) = mỤ₁ (1₁)mu₂ (12).]arrow_forward
- Assume that the random variables X1 and X2 are bivariate normally distributed with mean µ and covariance matrix Σ. Show that if cov(X1, X2) = 0 then X1 and X2 are independent.arrow_forwardLet X1, …, Xn be independent lognormal random variables and let a1, …, an be constants. Show that the product P = X1a1...Xnan is lognormal. (Hint: ln P = a1 ln X1 + ⋯ + an ln Xn.)arrow_forward(b) Let X₁, X₂, X3 be uncorrelated random variables, having the same variance ². Consider the linear transformations Y₁ = X₁ + X₂, Y₂ = X₁ + X3 and Y3 = X₂ + X3 . Find the correlations of Yi, Y; for i #j. (5 marks)arrow_forward
- EXER 6.3 Find the covariance and the correlation coefficient between X and Y, if X and Y are jointly discrete random variables, with joint PMF given by: SHOW SOLUTIONS X\Y 0 1 6 0 28 6 1 28 2 0 333333 28 28 28 2120 28 0arrow_forward3. Suppose X1 and X2 are independent random variables with variances o? > 0 and o? > 0, respectively. Let U = X1 and V = X1+ X2. Find p(U, V) in terms of ơ1 and 02.arrow_forwardB) Let X1,X2, .,Xn be a random sample from a N(u, o2) population with both parameters unknown. Consider the two estimators S2 and ô? for o? where S2 is the sample variance, i.e. s2 =E,(X, – X)² and ở² = 'E".,(X1 – X)². [X = =E-, X, is the sample mean]. %3D n-1 Li%3D1 [Hint: a2 (п-1)52 -~x~-1 which has mean (n-1) and variance 2(n-1)] i) Show that S2 is unbiased for o2. Find variance of S2. ii) Find the bias of 62 and the variance of ô2. iii) Show that Mean Square Error (MSE) of ô2 is smaller than MSE of S?. iv) Show that both S2 and ô? are consistent estimators for o?.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License