Mathematical Statistics with Applications
Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6.3, Problem 2E

a.

To determine

Find the density function for U1=3Y.

a.

Expert Solution
Check Mark

Answer to Problem 2E

The density function for U1=3Y is fU1(u)=u218,   3u3.

Explanation of Solution

Calculation:

From the given information, the probability density function for Y is f(y)=32y2,1y1.

The distribution function for Y is,

FY(y)=1yf(t)dt=1y32t2dt=32[t33]1y=12(y31)

From the given information, the random variable U1 is defined as U1=3Y.

Consider the distribution function for U1,

FU1(u1)=P(U1u)=P(3Yu)=P(Yu3)=12[(u3)31]

Limits for the random variable U1:

The range for the random variable Y is from  ̶ 1 to 1 and U1=3Y.

For Y=  ̶ 1, the value of U1 is  ̶ 3.

For Y=1, the value of U1 is 3.

Hence, the range for the random variable U1 is from  ̶ 3 to 3.

The probability density function for U1 is,

fU1(u)=FU1(u)=ddu(12[(u3)31])=12×3(u3)2×13=u218,             3u3

Thus, the density function for U1=3Y is fU1(u)=u218,   3u3.

b.

To determine

Find the density function for U2=3Y.

b.

Expert Solution
Check Mark

Answer to Problem 2E

The density function for U2=3Y is fU2(u)=32×(3u)2,2u4.

Explanation of Solution

Calculation:

From the given information, U2=3Y.

Consider the distribution function for U2,

FU2(u)=P(U2u)=P(3Yu)=P(Yu3)=P(Y>3u)

             =1F(3u)=112[(3u)31]=12(3u)3+32

Limits for the random variable U2:

The range for the random variable Y is from  ̶ 1 to 1 and U2=3Y.

For Y=  ̶ 1, the value of U2 is 4.

For Y=1, the value of U2 is 2.

Hence, the range for the random variable U2 is from  2 to 4.

The probability density function for U2 is,

fU2(u)=FU2(u)=ddu(12(3u)3+32)=32×(3u)2,2u4

Thus, the density function for U2=3Y is fU2(u)=32×(3u)2,2u4.

c.

To determine

Find the density function for U3=Y2.

c.

Expert Solution
Check Mark

Answer to Problem 2E

The density function for U3=Y2 is fU3(u)=32u,0u1.

Explanation of Solution

Calculation:

From the given information, U3=Y2.

Consider the distribution function for U3,

FU3(u)=P(U3u)=P(Y2u)=P(uYu)=F(u)F(u)

             =12((u)31)12((u)31)=12(u)312+12(u)3+12=u32

The probability density function for U3 is,

fU3(u)=FU3(u)=ddu(u32)=32×(u12),0u1

Thus, the density function for U3=Y2 is fU3(u)=32u,0u1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1 - Multiple Regression Equations and Predictions with XLMiner Analysis ToolPak (Structured) Video The owner of Showtime Movie Theaters, Inc., would like to predict weekly gross revenue as a function of advertising expenditures. Historical data for a sample of eight weeks are entered into the Microsoft Excel Online file below. Use the XLMiner Analysis ToolPak to perform your regression analysis in the designated areas of the spreadsheet. Due to a recent change by Microsoft you will need to open the XLMiner Analysis ToolPak add-in manually from the home ribbon. Screenshot of ToolPak X Open spreadsheet a. Develop an estimated regression equation with the amount of television advertising as the independent variable (to 2 decimals). JAN 27 Revenue = × TVAdv + b. Develop an estimated regression equation with both television advertising and newspaper advertising as the independent variables (to 2 decimals). Revenue = + TVAdy + NewsAdv c. Is the estimated regression equation coefficient for…
Question 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table. Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points) Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points) Hint for the first part of question 2: To assist you with filling out the table in the first part of the question,…
Consider a sample with data values of 27, 25, 20, 15, 30, 34, 28, and 25. Compute the range, interquartile range, variance, and standard deviation (to a maximum of 2 decimals, if decimals are necessary). Range   Interquartile range   Variance   Standard deviation

Chapter 6 Solutions

Mathematical Statistics with Applications

Ch. 6.3 - Suppose that two electronic components in the...Ch. 6.3 - Prob. 12ECh. 6.3 - If Y1 and Y2 are independent exponential random...Ch. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - A member of the Pareto family of distributions...Ch. 6.3 - Prob. 19ECh. 6.3 - Let the random variable Y possess a uniform...Ch. 6.3 - Prob. 21ECh. 6.4 - Prob. 23ECh. 6.4 - In Exercise 6.4, we considered a random variable Y...Ch. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Let Y have a uniform (0, 1) distribution. Show...Ch. 6.4 - Prob. 29ECh. 6.4 - A fluctuating electric current I may be considered...Ch. 6.4 - The joint distribution for the length of life of...Ch. 6.4 - Prob. 32ECh. 6.4 - The proportion of impurities in certain ore...Ch. 6.4 - A density function sometimes used by engineers to...Ch. 6.4 - Prob. 35ECh. 6.4 - Refer to Exercise 6.34. Let Y1 and Y2 be...Ch. 6.5 - Let Y1, Y2,, Yn be independent and identically...Ch. 6.5 - Let Y1 and Y2 be independent random variables with...Ch. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - A type of elevator has a maximum weight capacity...Ch. 6.5 - Prob. 43ECh. 6.5 - Prob. 44ECh. 6.5 - The manager of a construction job needs to figure...Ch. 6.5 - Suppose that Y has a gamma distribution with =...Ch. 6.5 - A random variable Y has a gamma distribution with ...Ch. 6.5 - Prob. 48ECh. 6.5 - Let Y1 be a binomial random variable with n1...Ch. 6.5 - Let Y be a binomial random variable with n trials...Ch. 6.5 - Prob. 51ECh. 6.5 - Prob. 52ECh. 6.5 - Let Y1,Y2,,Yn be independent binomial random...Ch. 6.5 - Prob. 54ECh. 6.5 - Customers arrive at a department store checkout...Ch. 6.5 - The length of time necessary to tune up a car is...Ch. 6.5 - Prob. 57ECh. 6.5 - Prob. 58ECh. 6.5 - Prob. 59ECh. 6.5 - Prob. 60ECh. 6.5 - Prob. 61ECh. 6.5 - Prob. 62ECh. 6.6 - In Example 6.14, Y1 and Y2 were independent...Ch. 6.6 - Refer to Exercise 6.63 and Example 6.14. Suppose...Ch. 6.6 - Prob. 65ECh. 6.6 - Prob. 66ECh. 6.6 - Prob. 67ECh. 6.6 - Prob. 68ECh. 6.6 - Prob. 71ECh. 6 - Let Y1 and Y2 be independent and uniformly...Ch. 6 - As in Exercise 6.72, let Y1 and Y2 be independent...Ch. 6 - Let Y1, Y2,, Yn be independent, uniformly...Ch. 6 - Prob. 75SECh. 6 - Prob. 76SECh. 6 - Prob. 77SECh. 6 - Prob. 78SECh. 6 - Refer to Exercise 6.77. If Y1,Y2,,Yn are...Ch. 6 - Prob. 80SECh. 6 - Let Y1, Y2,, Yn be independent, exponentially...Ch. 6 - Prob. 82SECh. 6 - Prob. 83SECh. 6 - Prob. 84SECh. 6 - Let Y1 and Y2 be independent and uniformly...Ch. 6 - Prob. 86SECh. 6 - Prob. 87SECh. 6 - Prob. 88SECh. 6 - Let Y1, Y2, . . . , Yn denote a random sample from...Ch. 6 - Prob. 90SECh. 6 - Prob. 91SECh. 6 - Prob. 92SECh. 6 - Prob. 93SECh. 6 - Prob. 94SECh. 6 - Prob. 96SECh. 6 - Prob. 97SECh. 6 - Prob. 98SECh. 6 - Prob. 99SECh. 6 - The time until failure of an electronic device has...Ch. 6 - Prob. 101SECh. 6 - Prob. 103SECh. 6 - Prob. 104SECh. 6 - Prob. 105SECh. 6 - Prob. 106SECh. 6 - Prob. 107SECh. 6 - Prob. 108SECh. 6 - Prob. 109SECh. 6 - Prob. 110SECh. 6 - Prob. 111SECh. 6 - Prob. 112SECh. 6 - Prob. 113SECh. 6 - Prob. 114SECh. 6 - Prob. 115SECh. 6 - Prob. 116SE
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License