
Single Variable Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112785
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.5, Problem 19E
(a) Find the approximations T10, M10, and S10 for
(b) Compare the actual errors in part (a) with the error estimates given by (3) and (4).
(c) How large do we have to choose n so that the approximations Tn, Mn, and Sn. to the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
This means that when the Radius of Convergence of the Power Series is a "finite positive real number" r>0, then every point x of the Power Series on (-r, r) will absolutely converge (x ∈ (-r, r)). Moreover, every point x on the Power Series (-∞, -r)U(r, +∞) will diverge (|x| >r). Please explain it.
Explain the conditions under which Radious of Convergence of Power Series is infinite. Explain what will happen?
Explain the conditions under Radius of Convergence which of Power Series is 0
Chapter 6 Solutions
Single Variable Essential Calculus: Early Transcendentals
Ch. 6.1 - Evaluate the integral using integration by parts...Ch. 6.1 - Evaluate the integral using integration by parts...Ch. 6.1 - Evaluate the integral. 3. xcos5xdxCh. 6.1 - Evaluate the integral. 4. ye0.2ydyCh. 6.1 - Evaluate the integral. 5. te3tdtCh. 6.1 - Evaluate the integral. 6. (x1)sinxdxCh. 6.1 - Evaluate the integral. 7. (x2+2x)cosxdxCh. 6.1 - Evaluate the integral. 8. t2sintdtCh. 6.1 - Evaluate the integral. ln(2x + 1) dxCh. 6.1 - Evaluate the integral. p5lnpdp
Ch. 6.1 - Prob. 11ECh. 6.1 - Evaluate the integral. sin1xdxCh. 6.1 - Evaluate the integral. 17. e2sin3dCh. 6.1 - Evaluate the integral. 18. ecos2dCh. 6.1 - Evaluate the integral. t3etdtCh. 6.1 - Evaluate the integral. 21. xe2x(1+2x)2dxCh. 6.1 - Evaluate the integral. 23. 01/2xcosxdxCh. 6.1 - Prob. 18ECh. 6.1 - Evaluate the integral. 49lnyydyCh. 6.1 - Prob. 22ECh. 6.1 - Prob. 19ECh. 6.1 - Evaluate the integral. 01tcoshtdtCh. 6.1 - Prob. 23ECh. 6.1 - Evaluate the integral. 34. 01r34+r2drCh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 31ECh. 6.1 - (a) Prove the reduction formula...Ch. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - A rocket accelerates by burning its onboard fuel,...Ch. 6.1 - Prob. 43ECh. 6.1 - Prob. 44ECh. 6.1 - Prob. 45ECh. 6.1 - (a) Use integration by parts to show that...Ch. 6.2 - Evaluate the integral. 1. sin2xcos3xdxCh. 6.2 - Evaluate the integral. 2. sin3cos4dCh. 6.2 - Evaluate the integral. 3. 0/2sin7cos5dCh. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Evaluate the integral. 11. 0/2sin2xcos2xdxCh. 6.2 - Prob. 8ECh. 6.2 - Evaluate the integral. 0cos6dCh. 6.2 - Evaluate the integral. t sin2t dtCh. 6.2 - Prob. 12ECh. 6.2 - Evaluate the integral. cos2x tan3x dxCh. 6.2 - Prob. 14ECh. 6.2 - Evaluate the integral. 1sinxcosxdxCh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Evaluate the integral. 23. tan2xdxCh. 6.2 - Evaluate the integral. 24. (tan2x+tan4x)dxCh. 6.2 - Evaluate the integral. 25. tan4xsec6xdxCh. 6.2 - Prob. 22ECh. 6.2 - Evaluate the integral. 27. tan3xsecxdxCh. 6.2 - Evaluate the integral. 28. tan5xsec3xdxCh. 6.2 - Prob. 23ECh. 6.2 - Evaluate the integral. 30. 0/4tan3tdtCh. 6.2 - Evaluate the integral. 31. tan5xdxCh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Evaluate the integral. csc4x cot6x dxCh. 6.2 - Prob. 33ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 65ECh. 6.2 - Prob. 66ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Evaluate the integral using the indicated...Ch. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Evaluate the integral. 7. 0adx(a2+x2)3/2, a 0Ch. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 61ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 62ECh. 6.2 - Prob. 63ECh. 6.2 - Prob. 64ECh. 6.2 - Prob. 59ECh. 6.2 - Evaluate the integral. 30. 0/2cost1+sin2tdtCh. 6.2 - Prob. 67ECh. 6.2 - Find the area of the region bounded by the...Ch. 6.2 - Prob. 69ECh. 6.2 - Prob. 70ECh. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Evaluate the integral. 7. x4x1dxCh. 6.3 - Evaluate the integral. 8. 3t2t+1dtCh. 6.3 - Evaluate the integral. 9. 5x+1(2x+1)(x1)dxCh. 6.3 - Evaluate the integral. 10. y(y+4)(2y1)dyCh. 6.3 - Evaluate the integral. 11. 0122x2+3x+1dxCh. 6.3 - Evaluate the integral. 12. 01x4x25x+6dxCh. 6.3 - 41550-7.4-13E
7–38. Evaluate the integral.
13.
Ch. 6.3 - Evaluate the integral. 14. 1(x+a)(x+b)dxCh. 6.3 - Prob. 15ECh. 6.3 - Evaluate the integral. 01x34x10x2x6dxCh. 6.3 - Prob. 17ECh. 6.3 - Evaluate the integral. x2+2x1x3xdxCh. 6.3 - Evaluate the integral. x2+2x1x3xdxCh. 6.3 - Evaluate the integral. x25x+16(2x+1)(x2)2dxCh. 6.3 - Evaluate the integral. x3+4x2+4dxCh. 6.3 - Evaluate the integral. x22x1(x1)2(x2+1)dxCh. 6.3 - Evaluate the integral. 23. 10(x1)(x2+9)dxCh. 6.3 - Evaluate the integral. 24. x2x+6x3+3xdxCh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 32ECh. 6.3 - Make a substitution to express the integrand as a...Ch. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Make a substitution to express the integrand as a...Ch. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - One method of slowing the growth of an insect...Ch. 6.3 - 41550-7.4-68E
68. Factor x4 + 1 as a difference of...Ch. 6.3 - Suppose that F, G, and Q are polynomials and...Ch. 6.3 - If f is a quadratic function such that f(0) = 1...Ch. 6.3 - Prob. 47ECh. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Prob. 7ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.5 - Let I=04f(x)dx, where f is the function whose...Ch. 6.5 - Prob. 2ECh. 6.5 - Estimate 01cos(x2)dx using (a) the Trapezoidal...Ch. 6.5 - Prob. 4ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - 41550-7.7-10E
7–18. Use (a) the Trapezoidal Rule,...Ch. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Prob. 14ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - 41550-7.7-21E
21. (a) Find the approximations T10,...Ch. 6.5 - How large should n be to guarantee that the...Ch. 6.5 - Find the approximations Ln, Rn, Tn, and Mn to the...Ch. 6.5 - Find the approximations Tn, Mn, and Sn. for n = 6...Ch. 6.5 - Estimate the area under the graph in the figure by...Ch. 6.5 - A radar gun was used to record the speed of a...Ch. 6.5 - The graph of the acceleration a(t) of a car...Ch. 6.5 - Water leaked from a tank at a rate of r(t) liters...Ch. 6.5 - A graph of the temperature in New York City on...Ch. 6.5 - Prob. 30ECh. 6.5 - (a) Use the Midpoint Rule and the given data to...Ch. 6.5 - The table (supplied by San Diego Gas and Electric)...Ch. 6.5 - Shown is the graph of traffic on an Internet...Ch. 6.5 - The figure shows a pendulum with length L that...Ch. 6.5 - The intensity of light with wavelength traveling...Ch. 6.5 - Prob. 38ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Show that 12(Tn+Mn)=T2n.Ch. 6.5 - Show that 13Tn+23Mn=S2n.Ch. 6.6 - Explain why each of the following integrals is...Ch. 6.6 - Which of the following integrals are improper?...Ch. 6.6 - 41550-7.8-3E
3. Find the area under the curve y =...Ch. 6.6 - Prob. 4ECh. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - 41550-7.8-29E
5-40 Determine whether each integral...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - (a) If g(x) = (sin2x)/x2, use your calculator or...Ch. 6.6 - (a) If g(x)=1/(x1), use your calculator or...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - 41550-7.8-53E
49–54 Use the Comparison Theorem to...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - 41550-7.8-55E
55. The integral
is improper for...Ch. 6.6 - Find the values of p for which the integral...Ch. 6.6 - Find the values of p for which the integral...Ch. 6.6 - 41550-7.8-60E
60. (a) Evaluate the integral for n...Ch. 6.6 - 41550-7.8-61E
61. (a) Show that is divergent.
(b)...Ch. 6.6 - 41550-7.8-62E
62. The average speed of molecules...Ch. 6.6 - Astronomers use a technique called stellar...Ch. 6.6 - 41550-7.8-67E
67. A manufacturer of lightbulbs...Ch. 6.6 - As we saw in Section 3.4, a radioactive substance...Ch. 6.6 - Determine how large the number a has to be so that...Ch. 6.6 - Estimate the numerical value of 0ex2dx by writing...Ch. 6.6 - 41550-7.8-76E
76. If is convergent and a and b...Ch. 6.6 - Show that 0x2ex2dx=120ex2dx.Ch. 6.6 - 41550-7.8-78E
78. Show that by interpreting the...Ch. 6.6 - Find the value of the constant C for which the...Ch. 6.6 - Find the value of the constant C for which the...Ch. 6.6 - Suppose f is continuous on [0, ) and limxf(x) = 1....Ch. 6.6 - Show that if a 1 and b a + 1, then the...Ch. 6 - Prob. 1RCCCh. 6 - How do you evaluate sinmxcosnxdx if m is odd? What...Ch. 6 - Prob. 3RCCCh. 6 - Prob. 4RCCCh. 6 - Prob. 5RCCCh. 6 - Prob. 6RCCCh. 6 - Prob. 7RCCCh. 6 - Prob. 8RCCCh. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - Prob. 3RQCh. 6 - Prob. 4RQCh. 6 - Prob. 5RQCh. 6 - Prob. 6RQCh. 6 - Prob. 7RQCh. 6 - Prob. 8RQCh. 6 - Prob. 9RQCh. 6 - 41550-7-10RQ
Determine whether the statement is...Ch. 6 - 41550-7-11RQ
Determine whether the statement is...Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Evaluate the integral. 1. 12(x+1)2xdxCh. 6 - Evaluate the integral. 2. 12x(x+1)2dxCh. 6 - Evaluate the integral. 0/2sinecosdCh. 6 - 41550-7-4RE
1–40 Evaluate the integral.
4.
Ch. 6 - Evaluate the integral. 5. dt2t2+3t+1Ch. 6 - Prob. 6RECh. 6 - Prob. 15RECh. 6 - Prob. 8RECh. 6 - Prob. 7RECh. 6 - Evaluate the integral. 10. 01arctanx1+x2dxCh. 6 - Prob. 11RECh. 6 - Prob. 12RECh. 6 - Prob. 13RECh. 6 - Prob. 14RECh. 6 - Evaluate the integral. 14x3/2lnxdxCh. 6 - Evaluate the integral. 16. sec6tan2dCh. 6 - Prob. 17RECh. 6 - Prob. 18RECh. 6 - Prob. 19RECh. 6 - Prob. 26RECh. 6 - Prob. 21RECh. 6 - Prob. 22RECh. 6 - Prob. 23RECh. 6 - Evaluate the integral. 24. excosxdxCh. 6 - Evaluate the integral. 25. 3x3x2+6x4(x2+1)(x2+2)dxCh. 6 - Prob. 20RECh. 6 - Prob. 27RECh. 6 - Prob. 28RECh. 6 - Prob. 29RECh. 6 - Prob. 30RECh. 6 - Prob. 31RECh. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Prob. 34RECh. 6 - Prob. 35RECh. 6 - Prob. 36RECh. 6 - Prob. 37RECh. 6 - Prob. 38RECh. 6 - Prob. 39RECh. 6 - Prob. 40RECh. 6 - Prob. 41RECh. 6 - Prob. 42RECh. 6 - Evaluate the integral or show that it is...Ch. 6 - Prob. 44RECh. 6 - Prob. 45RECh. 6 - Prob. 46RECh. 6 - Prob. 47RECh. 6 - Prob. 48RECh. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Prob. 51RECh. 6 - Prob. 52RECh. 6 - Prob. 53RECh. 6 - Prob. 54RECh. 6 - Prob. 55RECh. 6 - Prob. 56RECh. 6 - Prob. 57RECh. 6 - Prob. 58RECh. 6 - Prob. 59RECh. 6 - Use Simpsons Rule with n = 6 to estimate the area...Ch. 6 - The speedometer reading (v) on a car was observed...Ch. 6 - Prob. 62RECh. 6 - Prob. 63RECh. 6 - Prob. 64RECh. 6 - Prob. 65RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Explain the key points and reasons for 12.8.2 (1) and 12.8.2 (2)arrow_forwardQ1: A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time. Find the velocity and acceleration of the slider when t = 0.3 seconds. t(seconds) x(cm) 0 0.1 0.2 0.3 0.4 0.5 0.6 30.13 31.62 32.87 33.64 33.95 33.81 33.24 Q2: Using the Runge-Kutta method of fourth order, solve for y atr = 1.2, From dy_2xy +et = dx x²+xc* Take h=0.2. given x = 1, y = 0 Q3:Approximate the solution of the following equation using finite difference method. ly -(1-y= y = x), y(1) = 2 and y(3) = −1 On the interval (1≤x≤3).(taking h=0.5).arrow_forwardConsider the function f(x) = x²-1. (a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative. Show all your steps clearly. (b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the graph where x 1 and x-> 1+h (for a small positive value of h, illustrate conceptually). Then, draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the value you found in part (a). (c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in the context of the graph of f(x). How does the rate of change of this function vary at different points?arrow_forward
- 1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist, state that fact. и (a) f'(-5) (b) f'(-3) (c) f'(0) (d) f'(5) 2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5) = 4. - 3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2) and f'(2).arrow_forwardDoes the series converge or divergearrow_forwardDoes the series converge or divergearrow_forward
- Diverge or converarrow_forwardCan you help explain what I did based on partial fractions decomposition?arrow_forwardSuppose that a particle moves along a straight line with velocity v (t) = 62t, where 0 < t <3 (v(t) in meters per second, t in seconds). Find the displacement d (t) at time t and the displacement up to t = 3. d(t) ds = ["v (s) da = { The displacement up to t = 3 is d(3)- meters.arrow_forward
- Let f (x) = x², a 3, and b = = 4. Answer exactly. a. Find the average value fave of f between a and b. fave b. Find a point c where f (c) = fave. Enter only one of the possible values for c. c=arrow_forwardplease do Q3arrow_forwardUse the properties of logarithms, given that In(2) = 0.6931 and In(3) = 1.0986, to approximate the logarithm. Use a calculator to confirm your approximations. (Round your answers to four decimal places.) (a) In(0.75) (b) In(24) (c) In(18) 1 (d) In ≈ 2 72arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY