
Single Variable Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112785
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.3, Problem 44E
Factor x4 + 1 as a difference of squares by first adding and subtracting the same quantity. Use this factorization to evaluate
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For the curve defined by
r(t) = (e** cos(t), et sin(t))
find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration at
t
=
πT
3
T (1)
N
Ň (1)
133 |
aN =
53
ar
=
=
=
Find the tangential and normal components of the acceleration vector for the curve
-
F(t) = (2t, −3t³, −3+¹) at the point t = 1
-
ā(1)
=
T +
Ñ
Give your answers to two decimal places
Find the unit tangent vector to the curve defined by
(t)=(-2t,-4t, √√49 - t²) at t = −6.
T(−6) =
Chapter 6 Solutions
Single Variable Essential Calculus: Early Transcendentals
Ch. 6.1 - Evaluate the integral using integration by parts...Ch. 6.1 - Evaluate the integral using integration by parts...Ch. 6.1 - Evaluate the integral. 3. xcos5xdxCh. 6.1 - Evaluate the integral. 4. ye0.2ydyCh. 6.1 - Evaluate the integral. 5. te3tdtCh. 6.1 - Evaluate the integral. 6. (x1)sinxdxCh. 6.1 - Evaluate the integral. 7. (x2+2x)cosxdxCh. 6.1 - Evaluate the integral. 8. t2sintdtCh. 6.1 - Evaluate the integral. ln(2x + 1) dxCh. 6.1 - Evaluate the integral. p5lnpdp
Ch. 6.1 - Prob. 11ECh. 6.1 - Evaluate the integral. sin1xdxCh. 6.1 - Evaluate the integral. 17. e2sin3dCh. 6.1 - Evaluate the integral. 18. ecos2dCh. 6.1 - Evaluate the integral. t3etdtCh. 6.1 - Evaluate the integral. 21. xe2x(1+2x)2dxCh. 6.1 - Evaluate the integral. 23. 01/2xcosxdxCh. 6.1 - Prob. 18ECh. 6.1 - Evaluate the integral. 49lnyydyCh. 6.1 - Prob. 22ECh. 6.1 - Prob. 19ECh. 6.1 - Evaluate the integral. 01tcoshtdtCh. 6.1 - Prob. 23ECh. 6.1 - Evaluate the integral. 34. 01r34+r2drCh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 31ECh. 6.1 - (a) Prove the reduction formula...Ch. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - A rocket accelerates by burning its onboard fuel,...Ch. 6.1 - Prob. 43ECh. 6.1 - Prob. 44ECh. 6.1 - Prob. 45ECh. 6.1 - (a) Use integration by parts to show that...Ch. 6.2 - Evaluate the integral. 1. sin2xcos3xdxCh. 6.2 - Evaluate the integral. 2. sin3cos4dCh. 6.2 - Evaluate the integral. 3. 0/2sin7cos5dCh. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Evaluate the integral. 11. 0/2sin2xcos2xdxCh. 6.2 - Prob. 8ECh. 6.2 - Evaluate the integral. 0cos6dCh. 6.2 - Evaluate the integral. t sin2t dtCh. 6.2 - Prob. 12ECh. 6.2 - Evaluate the integral. cos2x tan3x dxCh. 6.2 - Prob. 14ECh. 6.2 - Evaluate the integral. 1sinxcosxdxCh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Evaluate the integral. 23. tan2xdxCh. 6.2 - Evaluate the integral. 24. (tan2x+tan4x)dxCh. 6.2 - Evaluate the integral. 25. tan4xsec6xdxCh. 6.2 - Prob. 22ECh. 6.2 - Evaluate the integral. 27. tan3xsecxdxCh. 6.2 - Evaluate the integral. 28. tan5xsec3xdxCh. 6.2 - Prob. 23ECh. 6.2 - Evaluate the integral. 30. 0/4tan3tdtCh. 6.2 - Evaluate the integral. 31. tan5xdxCh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Evaluate the integral. csc4x cot6x dxCh. 6.2 - Prob. 33ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 65ECh. 6.2 - Prob. 66ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Evaluate the integral using the indicated...Ch. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Evaluate the integral. 7. 0adx(a2+x2)3/2, a 0Ch. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 61ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 62ECh. 6.2 - Prob. 63ECh. 6.2 - Prob. 64ECh. 6.2 - Prob. 59ECh. 6.2 - Evaluate the integral. 30. 0/2cost1+sin2tdtCh. 6.2 - Prob. 67ECh. 6.2 - Find the area of the region bounded by the...Ch. 6.2 - Prob. 69ECh. 6.2 - Prob. 70ECh. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Evaluate the integral. 7. x4x1dxCh. 6.3 - Evaluate the integral. 8. 3t2t+1dtCh. 6.3 - Evaluate the integral. 9. 5x+1(2x+1)(x1)dxCh. 6.3 - Evaluate the integral. 10. y(y+4)(2y1)dyCh. 6.3 - Evaluate the integral. 11. 0122x2+3x+1dxCh. 6.3 - Evaluate the integral. 12. 01x4x25x+6dxCh. 6.3 - 41550-7.4-13E
7–38. Evaluate the integral.
13.
Ch. 6.3 - Evaluate the integral. 14. 1(x+a)(x+b)dxCh. 6.3 - Prob. 15ECh. 6.3 - Evaluate the integral. 01x34x10x2x6dxCh. 6.3 - Prob. 17ECh. 6.3 - Evaluate the integral. x2+2x1x3xdxCh. 6.3 - Evaluate the integral. x2+2x1x3xdxCh. 6.3 - Evaluate the integral. x25x+16(2x+1)(x2)2dxCh. 6.3 - Evaluate the integral. x3+4x2+4dxCh. 6.3 - Evaluate the integral. x22x1(x1)2(x2+1)dxCh. 6.3 - Evaluate the integral. 23. 10(x1)(x2+9)dxCh. 6.3 - Evaluate the integral. 24. x2x+6x3+3xdxCh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 32ECh. 6.3 - Make a substitution to express the integrand as a...Ch. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Make a substitution to express the integrand as a...Ch. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - One method of slowing the growth of an insect...Ch. 6.3 - 41550-7.4-68E
68. Factor x4 + 1 as a difference of...Ch. 6.3 - Suppose that F, G, and Q are polynomials and...Ch. 6.3 - If f is a quadratic function such that f(0) = 1...Ch. 6.3 - Prob. 47ECh. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Prob. 7ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.5 - Let I=04f(x)dx, where f is the function whose...Ch. 6.5 - Prob. 2ECh. 6.5 - Estimate 01cos(x2)dx using (a) the Trapezoidal...Ch. 6.5 - Prob. 4ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - 41550-7.7-10E
7–18. Use (a) the Trapezoidal Rule,...Ch. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Prob. 14ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - 41550-7.7-21E
21. (a) Find the approximations T10,...Ch. 6.5 - How large should n be to guarantee that the...Ch. 6.5 - Find the approximations Ln, Rn, Tn, and Mn to the...Ch. 6.5 - Find the approximations Tn, Mn, and Sn. for n = 6...Ch. 6.5 - Estimate the area under the graph in the figure by...Ch. 6.5 - A radar gun was used to record the speed of a...Ch. 6.5 - The graph of the acceleration a(t) of a car...Ch. 6.5 - Water leaked from a tank at a rate of r(t) liters...Ch. 6.5 - A graph of the temperature in New York City on...Ch. 6.5 - Prob. 30ECh. 6.5 - (a) Use the Midpoint Rule and the given data to...Ch. 6.5 - The table (supplied by San Diego Gas and Electric)...Ch. 6.5 - Shown is the graph of traffic on an Internet...Ch. 6.5 - The figure shows a pendulum with length L that...Ch. 6.5 - The intensity of light with wavelength traveling...Ch. 6.5 - Prob. 38ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Show that 12(Tn+Mn)=T2n.Ch. 6.5 - Show that 13Tn+23Mn=S2n.Ch. 6.6 - Explain why each of the following integrals is...Ch. 6.6 - Which of the following integrals are improper?...Ch. 6.6 - 41550-7.8-3E
3. Find the area under the curve y =...Ch. 6.6 - Prob. 4ECh. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - 41550-7.8-29E
5-40 Determine whether each integral...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - (a) If g(x) = (sin2x)/x2, use your calculator or...Ch. 6.6 - (a) If g(x)=1/(x1), use your calculator or...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - 41550-7.8-53E
49–54 Use the Comparison Theorem to...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - 41550-7.8-55E
55. The integral
is improper for...Ch. 6.6 - Find the values of p for which the integral...Ch. 6.6 - Find the values of p for which the integral...Ch. 6.6 - 41550-7.8-60E
60. (a) Evaluate the integral for n...Ch. 6.6 - 41550-7.8-61E
61. (a) Show that is divergent.
(b)...Ch. 6.6 - 41550-7.8-62E
62. The average speed of molecules...Ch. 6.6 - Astronomers use a technique called stellar...Ch. 6.6 - 41550-7.8-67E
67. A manufacturer of lightbulbs...Ch. 6.6 - As we saw in Section 3.4, a radioactive substance...Ch. 6.6 - Determine how large the number a has to be so that...Ch. 6.6 - Estimate the numerical value of 0ex2dx by writing...Ch. 6.6 - 41550-7.8-76E
76. If is convergent and a and b...Ch. 6.6 - Show that 0x2ex2dx=120ex2dx.Ch. 6.6 - 41550-7.8-78E
78. Show that by interpreting the...Ch. 6.6 - Find the value of the constant C for which the...Ch. 6.6 - Find the value of the constant C for which the...Ch. 6.6 - Suppose f is continuous on [0, ) and limxf(x) = 1....Ch. 6.6 - Show that if a 1 and b a + 1, then the...Ch. 6 - Prob. 1RCCCh. 6 - How do you evaluate sinmxcosnxdx if m is odd? What...Ch. 6 - Prob. 3RCCCh. 6 - Prob. 4RCCCh. 6 - Prob. 5RCCCh. 6 - Prob. 6RCCCh. 6 - Prob. 7RCCCh. 6 - Prob. 8RCCCh. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - Prob. 3RQCh. 6 - Prob. 4RQCh. 6 - Prob. 5RQCh. 6 - Prob. 6RQCh. 6 - Prob. 7RQCh. 6 - Prob. 8RQCh. 6 - Prob. 9RQCh. 6 - 41550-7-10RQ
Determine whether the statement is...Ch. 6 - 41550-7-11RQ
Determine whether the statement is...Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Evaluate the integral. 1. 12(x+1)2xdxCh. 6 - Evaluate the integral. 2. 12x(x+1)2dxCh. 6 - Evaluate the integral. 0/2sinecosdCh. 6 - 41550-7-4RE
1–40 Evaluate the integral.
4.
Ch. 6 - Evaluate the integral. 5. dt2t2+3t+1Ch. 6 - Prob. 6RECh. 6 - Prob. 15RECh. 6 - Prob. 8RECh. 6 - Prob. 7RECh. 6 - Evaluate the integral. 10. 01arctanx1+x2dxCh. 6 - Prob. 11RECh. 6 - Prob. 12RECh. 6 - Prob. 13RECh. 6 - Prob. 14RECh. 6 - Evaluate the integral. 14x3/2lnxdxCh. 6 - Evaluate the integral. 16. sec6tan2dCh. 6 - Prob. 17RECh. 6 - Prob. 18RECh. 6 - Prob. 19RECh. 6 - Prob. 26RECh. 6 - Prob. 21RECh. 6 - Prob. 22RECh. 6 - Prob. 23RECh. 6 - Evaluate the integral. 24. excosxdxCh. 6 - Evaluate the integral. 25. 3x3x2+6x4(x2+1)(x2+2)dxCh. 6 - Prob. 20RECh. 6 - Prob. 27RECh. 6 - Prob. 28RECh. 6 - Prob. 29RECh. 6 - Prob. 30RECh. 6 - Prob. 31RECh. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Prob. 34RECh. 6 - Prob. 35RECh. 6 - Prob. 36RECh. 6 - Prob. 37RECh. 6 - Prob. 38RECh. 6 - Prob. 39RECh. 6 - Prob. 40RECh. 6 - Prob. 41RECh. 6 - Prob. 42RECh. 6 - Evaluate the integral or show that it is...Ch. 6 - Prob. 44RECh. 6 - Prob. 45RECh. 6 - Prob. 46RECh. 6 - Prob. 47RECh. 6 - Prob. 48RECh. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Prob. 51RECh. 6 - Prob. 52RECh. 6 - Prob. 53RECh. 6 - Prob. 54RECh. 6 - Prob. 55RECh. 6 - Prob. 56RECh. 6 - Prob. 57RECh. 6 - Prob. 58RECh. 6 - Prob. 59RECh. 6 - Use Simpsons Rule with n = 6 to estimate the area...Ch. 6 - The speedometer reading (v) on a car was observed...Ch. 6 - Prob. 62RECh. 6 - Prob. 63RECh. 6 - Prob. 64RECh. 6 - Prob. 65RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- An airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane? 428 mph 41° 50 mph a. The ground speed of the airplane is b. The bearing of the airplane is mph. south of west.arrow_forwardRylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude and its direction angle from the positive x-axis. 119 lb 20.2° 377 lb a. The resultant force is (Tip: omit degree notations from your answers; e.g. enter cos(45) instead of cos(45°)) b. It's magnitude is lb. c. It's angle from the positive x-axis isarrow_forwardFind a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14 and -3x - y + z = −21. The equation of the plane is:arrow_forward
- Determine whether the lines L₁ : F(t) = (−2, 3, −1)t + (0,2,-3) and L2 : ƒ(s) = (2, −3, 1)s + (−10, 17, -8) intersect. If they do, find the point of intersection. ● They intersect at the point They are skew lines They are parallel or equalarrow_forwardAnswer questions 2arrow_forwardHow does a fourier transform works?arrow_forward
- Determine the radius of convergence of a power series:12.6.5, 12.6.6, 12.6.7, 12.6.8Hint: Use Theorem12.5.1 and root test, ratio test, integral testarrow_forwardCan you answer this question and give step by step and why and how to get it. Can you write it (numerical method)arrow_forwardCan you answer this question and give step by step and why and how to get it. Can you write it (numerical method)arrow_forward
- There are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward5. For the function y-x³-3x²-1, use derivatives to: (a) determine the intervals of increase and decrease. (b) determine the local (relative) maxima and minima. (e) determine the intervals of concavity. (d) determine the points of inflection. (e) sketch the graph with the above information indicated on the graph.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell


Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning


College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY