Student Solutions Manual For Thomas' Calculus Format: Paperback
14th Edition
ISBN: 9780134439334
Author: Hass, Joel R.^heil, Christopher D.^weir, Maurice D.^heil, Christopher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.5, Problem 12E
To determine
Find the work done on the particle, when it reaches
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average
velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1.
Time
Interval
Average
Velocity
[1,2]
Complete the following table.
Time
Interval
Average
Velocity
[1, 1.5]
[1, 1.1]
[1, 1.01]
[1, 1.001]
[1,2]
[1, 1.5]
[1, 1.1]
[1, 1.01]
[1, 1.001]
ப
(Type exact answers. Type integers or decimals.)
The value of the instantaneous velocity at t = 1 is
(Round to the nearest integer as needed.)
Find the following limit or state that it does not exist. Assume b is a fixed real number.
(x-b) 40 - 3x + 3b
lim
x-b
x-b
...
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
(x-b) 40 -3x+3b
A. lim
x-b
x-b
B. The limit does not exist.
(Type an exact answer.)
x4 -289
Consider the function f(x) =
2
X-17
Complete parts a and b below.
a. Analyze lim f(x) and
lim f(x), and then identify the horizontal asymptotes.
x+x
X--∞
lim
4
X-289
2
X∞ X-17
X - 289
lim
=
2
...
X∞ X - 17
Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice.
A. The function has a horizontal asymptote at y =
B. The function has two horizontal asymptotes. The top asymptote is y =
and the bottom asymptote is y = ☐ .
C. The function has no horizontal asymptotes.
b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice.
e
Chapter 6 Solutions
Student Solutions Manual For Thomas' Calculus Format: Paperback
Ch. 6.1 - Prob. 1ECh. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...
Ch. 6.1 - Find the volume of the given right tetrahedron....Ch. 6.1 - Prob. 12ECh. 6.1 - A twisted solid A square of side length s lies in...Ch. 6.1 - Prob. 14ECh. 6.1 - Intersection of two half-cylinders Two...Ch. 6.1 - Gasoline in a tank A gasoline tank is in the shape...Ch. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - In Exercises 31 and 32, find the volume of the...Ch. 6.1 - In Exercises 31 and 32, find the volume of the...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 35ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - Prob. 44ECh. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - By integration, find the volume of the solid...Ch. 6.1 - The volume of a torus The disk x2 + y2 ≤ a2 is...Ch. 6.1 - Prob. 54ECh. 6.1 - Prob. 55ECh. 6.1 - Prob. 56ECh. 6.1 - Volume of a hemisphere Derive the formula V =...Ch. 6.1 - Designing a plumb bob Having been asked to design...Ch. 6.1 - Designing a wok You are designing a wok frying pan...Ch. 6.1 - Max-min The arch y = sin x, 0 ≤ x ≤ π, is revolved...Ch. 6.1 - Prob. 61ECh. 6.1 - Prob. 62ECh. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 9ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 17ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 27 and 28, use the shell method to...Ch. 6.2 - Prob. 28ECh. 6.2 - For some regions, both the washer and shell...Ch. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - In Exercises 31–36, find the volumes of the solids...Ch. 6.2 - Prob. 35ECh. 6.2 - In Exercises 31–36, find the volumes of the solids...Ch. 6.2 - Prob. 37ECh. 6.2 - The region in the first quadrant that is bounded...Ch. 6.2 - The region shown here is to be revolved about the...Ch. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Consider the region R bounded by the graphs of y =...Ch. 6.2 - Consider the region R given in Exercise 45. If the...Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - Find a curve with a positive derivative through...Ch. 6.3 - Prob. 22ECh. 6.3 - Find the length of the curve
from x = 0 to x =...Ch. 6.3 - The length of an astroid The graph of the equation...Ch. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - If 9x2 = y(y − 3)2, that
Ch. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Find the arc length function for the graph of f(x)...Ch. 6.3 - Prob. 34ECh. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 3ECh. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Find the lateral (side) surface area of the cone...Ch. 6.4 - Find the lateral surface area of the cone...Ch. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 14ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - The surface of an astroid Find the area of the...Ch. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Stretching a spring A spring has a natural length...Ch. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Subway car springs It takes a force of 21,714 lb...Ch. 6.5 - Bathroom scale A bathroom scale is compressed 1/16...Ch. 6.5 - Lifting a rope A mountain climber is about to haul...Ch. 6.5 - Leaky sandbag A bag of sand originally weighing...Ch. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Leaky bucket Assume the bucket in Example 4 is...Ch. 6.5 - Prob. 14ECh. 6.5 - Pumping water The rectangular tank shown here,...Ch. 6.5 - Emptying a cistern The rectangular cistern...Ch. 6.5 - Pumping oil How much work would it take to pump...Ch. 6.5 - Prob. 18ECh. 6.5 - Emptying a tank A vertical right-circular...Ch. 6.5 - Prob. 20ECh. 6.5 - The graph of y = x2 on 0 ≤ x ≤ 2 is revolved about...Ch. 6.5 - A right-circular cylindrical tank of height 10 ft...Ch. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - In Exercises 26–30, use the result of Exercise...Ch. 6.5 - Prob. 28ECh. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Water tower Your town has decided to drill a well...Ch. 6.5 - Prob. 33ECh. 6.5 - Forcing electrons together Two electrons r meters...Ch. 6.5 - Triangular plate Calculate the fluid force on one...Ch. 6.5 - Triangular plate Calculate the fluid force on one...Ch. 6.5 - Prob. 37ECh. 6.5 - Prob. 38ECh. 6.5 - Triangular plate The isosceles triangular plate...Ch. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - Prob. 42ECh. 6.5 - Prob. 43ECh. 6.5 - Prob. 44ECh. 6.5 - Prob. 45ECh. 6.5 - Prob. 46ECh. 6.5 - Prob. 47ECh. 6.5 - Prob. 48ECh. 6.5 - Prob. 49ECh. 6.5 - Watering trough The vertical ends of a watering...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - Prob. 5ECh. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.6 - Prob. 12ECh. 6.6 - Prob. 13ECh. 6.6 - Prob. 14ECh. 6.6 - Prob. 15ECh. 6.6 - Prob. 16ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 18ECh. 6.6 - Prob. 19ECh. 6.6 - Prob. 20ECh. 6.6 - Prob. 21ECh. 6.6 - Prob. 22ECh. 6.6 - The region bounded by the curves and the lines x...Ch. 6.6 - Prob. 24ECh. 6.6 - Prob. 25ECh. 6.6 - Prob. 26ECh. 6.6 - Prob. 27ECh. 6.6 - Prob. 28ECh. 6.6 - Prob. 29ECh. 6.6 - Prob. 30ECh. 6.6 - Prob. 31ECh. 6.6 - Prob. 32ECh. 6.6 - Prob. 33ECh. 6.6 - Prob. 34ECh. 6.6 - In Exercises 37-40, find the centroid of the thin...Ch. 6.6 - Prob. 36ECh. 6.6 - In Exercises 37-40, find the centroid of the thin...Ch. 6.6 - Prob. 38ECh. 6.6 - Prob. 39ECh. 6.6 - Prob. 40ECh. 6.6 - Prob. 41ECh. 6.6 - Use a theorem of Pappus to find the volume...Ch. 6.6 - Prob. 43ECh. 6.6 - Prob. 44ECh. 6.6 - Use Pappus’s Theorem for surface area and the fact...Ch. 6.6 - Prob. 46ECh. 6.6 - The area of the region R enclosed by the...Ch. 6.6 - As found in Example 8, the centroid of the region...Ch. 6.6 - Prob. 49ECh. 6.6 - Prob. 50ECh. 6.6 - Prob. 51ECh. 6.6 - Prob. 52ECh. 6 - Prob. 1GYRCh. 6 - How are the disk and washer methods for...Ch. 6 - Prob. 3GYRCh. 6 - How do you find the length of the graph of a...Ch. 6 - How do you define and calculate the area of the...Ch. 6 - Prob. 6GYRCh. 6 - What is a center of mass? What is a centroid?
Ch. 6 - Prob. 8GYRCh. 6 - Prob. 9GYRCh. 6 - How do you locate the center of mass of a thin...Ch. 6 - Prob. 1PECh. 6 - Prob. 2PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 4PECh. 6 - Prob. 5PECh. 6 - Prob. 6PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 8PECh. 6 - Prob. 9PECh. 6 - Prob. 10PECh. 6 - Prob. 11PECh. 6 - Prob. 12PECh. 6 - Prob. 13PECh. 6 - Prob. 14PECh. 6 - Prob. 15PECh. 6 - Prob. 16PECh. 6 - Prob. 17PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 19PECh. 6 - Prob. 20PECh. 6 - Lengths of Curves
Find the lengths of the curves...Ch. 6 - Prob. 22PECh. 6 - Prob. 23PECh. 6 - Prob. 24PECh. 6 - Prob. 25PECh. 6 - Prob. 26PECh. 6 - Prob. 27PECh. 6 - Prob. 28PECh. 6 - Prob. 29PECh. 6 - Prob. 30PECh. 6 - Prob. 31PECh. 6 - Pumping a reservoir (Continuation of Exercise 31.)...Ch. 6 - Prob. 33PECh. 6 - Pumping a cylindrical tank A storage tank is a...Ch. 6 - Prob. 35PECh. 6 - Prob. 36PECh. 6 - Prob. 37PECh. 6 - Prob. 38PECh. 6 - Prob. 39PECh. 6 - Prob. 40PECh. 6 - Prob. 41PECh. 6 - Prob. 42PECh. 6 - Prob. 43PECh. 6 - Prob. 44PECh. 6 - Prob. 45PECh. 6 - Prob. 46PECh. 6 - Prob. 1AAECh. 6 - Prob. 2AAECh. 6 - Prob. 3AAECh. 6 - Prob. 4AAECh. 6 - Prob. 5AAECh. 6 - Consider a right-circular cylinder of diameter 1....Ch. 6 - Prob. 7AAECh. 6 - Prob. 8AAECh. 6 - Prob. 9AAECh. 6 - Prob. 10AAECh. 6 - Prob. 11AAECh. 6 - Prob. 12AAECh. 6 - Prob. 13AAECh. 6 - Prob. 14AAECh. 6 - Prob. 15AAECh. 6 - Prob. 16AAECh. 6 - Prob. 17AAECh. 6 - Prob. 18AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Explain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardEvaluate the following limit. lim X-X (10+19) Select the correct answer below and, if necessary, fill in the answer box within your choice. 10 A. lim 10+ = 2 ☐ (Type an integer or a simplified fraction.) X-∞ B. The limit does not exist.arrow_forward
- Find the following limit or state that it does not exist. x² +x-20 lim x-4 x-4 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. lim x²+x-20 x-4 (Type an exact answer.) x→4 B. The limit does not exist.arrow_forwardDetermine the intervals on which the following function is continuous. f(x) = x - 5x + 6 2 X-9 On what interval(s) is f continuous? (Simplify your answer. Type your answer in interval notation. Use a comma to separate answers as needed.)arrow_forwardFind the following limit or state that it does not exist. 2 3x² +7x+2 lim X-2 6x-8 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. lim 3x²+7x+2 6x-8 (Simplify your answer.) X-2 B. The limit does not exist.arrow_forward
- Find the following limit or state that it does not exist. X-2 lim x-2 5x+6 - 4 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. lim X-2 X-2 15x+6 = (Type an exact answer.) - 4 B. The limit does not exist.arrow_forward(a) Sketch the graph of a function that is not continuous at 1, but is defined at 1. (b) Sketch the graph of a function that is not continuous at 1, but has a limit at 1. (a) Which of the following graphs shows a function that is not continuous at 1, but is defined at 1. ○ A. Ay ✓ B. 5 X ✓ (b) Which of the following graphs shows a function that is not continuous at 1, but has a limit at 1. ○ A. B. X y 5- -5 5 ✓ ✓ 5 ☑ 5 X y ☑ LVarrow_forwardIf lim f(x)=L and lim f(x) = M, where L and M are finite real numbers, then what must be true about L x-a x-a+ and M in order for lim f(x) to exist? x-a Choose the correct answer below. A. L = M B. LMarrow_forward
- Determine the following limit, using ∞ or - ∞ when appropriate, or state that it does not exist. lim csc 0 Select the correct choice below, and fill in the answer box if necessary. lim csc 0 = ○ A. 0→⭑ B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardIs the function f(x) continuous at x = 1? (x) 7 6 5 4 3 2 1 0 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4 -5 -6 -71 Select the correct answer below: The function f(x) is continuous at x = 1. The right limit does not equal the left limit. Therefore, the function is not continuous. The function f(x) is discontinuous at x = 1. We cannot tell if the function is continuous or discontinuous.arrow_forwardQuestion Is the function f(x) shown in the graph below continuous at x = -5? f(z) 7 6 5 4 2 1 0 -10 -6 -5 -4 1 0 2 3 5 7 10 -1 -2 -3 -4 -5 Select the correct answer below: The function f(x) is continuous. The right limit exists. Therefore, the function is continuous. The left limit exists. Therefore, the function is continuous. The function f(x) is discontinuous. We cannot tell if the function is continuous or discontinuous.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY