Basketball Suppose that your team is behind by two points and you have the ball on your opponent’s court with a few seconds left in the game. You can try a two-point shot (probability of success is .48) or a three-point shot (probability of success is .29). Which choice gives your team the greater probability of winning the game? Assume that your shot will be taken just before the buzzer sounds and that each team has the same chance of winning in overtime.
Basketball Suppose that your team is behind by two points and you have the ball on your opponent’s court with a few seconds left in the game. You can try a two-point shot (probability of success is .48) or a three-point shot (probability of success is .29). Which choice gives your team the greater probability of winning the game? Assume that your shot will be taken just before the buzzer sounds and that each team has the same chance of winning in overtime.
Basketball Suppose that your team is behind by two points and you have the ball on your opponent’s court with a few seconds left in the game. You can try a two-point shot (probability of success is .48) or a three-point shot (probability of success is .29). Which choice gives your team the greater probability of winning the game? Assume that your shot will be taken just before the buzzer sounds and that each team has the same chance of winning in overtime.
One deck of cards is made of 4 suits (Spade, Diamond, Heart, Club) and 13 cards (A -> K), totaling 52 cards.
A flush is a combination of 5 cards with the same suit. e.g. 3d 5d 9d Jd Kd
A straight flush is a combination of 5 cards with the same suit, but also connected to each other. (e.g. highest straight flush is 10s Js Qs Ks As, the
lowest straight flush is Ah, 2h, 3h, 4h, 5h)
A straight flush is not considered a flush.
Question 2 of 4
Draw random 5 cards (in one action) from the 52 cards deck, and calculate the probability of a flush.
Provide the formula you used.
2. Consider the vector force: F(x, y, z) = 2xye²i + (x²e² + y)j + (x²ye² — z)k.
(A) [80%] Show that F satisfies the conditions for a conservative vector field, and find a potential
function (x, y, z) for F. Remark: To find o, you must use the method explained in the
lecture.
(B) [20%] Use the Fundamental Theorem for Line Integrals to compute the work done by F on
an object moves along any path from (0,1,2) to (2, 1, -8).
Chapter 6 Solutions
Finite Mathematics & Its Applications (12th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Probability & Statistics (28 of 62) Basic Definitions and Symbols Summarized; Author: Michel van Biezen;https://www.youtube.com/watch?v=21V9WBJLAL8;License: Standard YouTube License, CC-BY
Introduction to Probability, Basic Overview - Sample Space, & Tree Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=SkidyDQuupA;License: Standard YouTube License, CC-BY