For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement d as a function of the time t . (See Example 1) Initial Displacement d at t = 0 Amplitude Period or Frequency 0 ft intially moving to the left 0.25 ft 0.1 Hz
For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement d as a function of the time t . (See Example 1) Initial Displacement d at t = 0 Amplitude Period or Frequency 0 ft intially moving to the left 0.25 ft 0.1 Hz
Solution Summary: The author calculates the displacement d as a function of time for an object that is attached to the horizontal spring of the subject.
For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement
d
as a function of the time
t
. (See Example 1)
Initial Displacement
d
at
t
=
0
Amplitude
Period or Frequency
0
ft intially moving to the left
0.25
ft
0.1
Hz
4. Suppose that the population of a certain collection of rare Brazilian ants is given by
P(t)=(t+100) In(t+2),
Where t represents the time in days. Find and interpret the rates of change of the population on the third day
and on the tenth day.
Find all values of x for f (x)=(x²-4) 4 where the tangent line is horizontal.
5. Find the slope of the tangent line to the graph of f(x)=-√8x+1 at x=1. Write the equation of the tangent
line.
3. Find the derivative of each function. Label with appropriate derivative notation showing both dependent and
independent variables.
f(t)=4t(2t⭑+4)³
a. f(t)=4t (2t+4)³ (Answer must be factored.)
b.
y=
3
1
(2x³-4)
6
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.