To approximate the distance from the Earth to stars relatively close by. astronomers often use the method of parallax. Parallax is the apparent displacement of an object caused by a change in the observer's point of view. As the Earth orbits the Sun, a nearby star will appear to move against the more distant background stars. Astronomers measure a star's position at times exactly 6 months apart when the Earth is at opposite points in its orbit around the Sun. The Sun, Earth, and star form the vertices of a right triangle with ∠ P S E = 90 ° . The length of is the distance between the Earth and Sun. approximately 92 , 900 , 000 mi . The parallax angle (or simply parallax) is denoted by p . Use this information for Exercises 31-32. a. Find the distance between the Earth and Barnard's Star if the parallax angle is 0.547 arcseconds. Round to the nearest hundred billion miles. b. Write the distance in part (a) in light-years. Round to 1 decimal place. (Hint 1 light-year is the distance that light travels in 1 yr and is approximately 5.878 × 10 12 mi .)
To approximate the distance from the Earth to stars relatively close by. astronomers often use the method of parallax. Parallax is the apparent displacement of an object caused by a change in the observer's point of view. As the Earth orbits the Sun, a nearby star will appear to move against the more distant background stars. Astronomers measure a star's position at times exactly 6 months apart when the Earth is at opposite points in its orbit around the Sun. The Sun, Earth, and star form the vertices of a right triangle with ∠ P S E = 90 ° . The length of is the distance between the Earth and Sun. approximately 92 , 900 , 000 mi . The parallax angle (or simply parallax) is denoted by p . Use this information for Exercises 31-32. a. Find the distance between the Earth and Barnard's Star if the parallax angle is 0.547 arcseconds. Round to the nearest hundred billion miles. b. Write the distance in part (a) in light-years. Round to 1 decimal place. (Hint 1 light-year is the distance that light travels in 1 yr and is approximately 5.878 × 10 12 mi .)
Solution Summary: The author calculates the distance between the earth and Barnard's star, if the parallax angle is 0.547arcseconds.
To approximate the distance from the Earth to stars relatively close by. astronomers often use the method of parallax. Parallax is the apparent displacement of an object caused by a change in the observer's point of view. As the Earth orbits the Sun, a nearby star will appear to move against the more distant background stars. Astronomers measure a star's position at times exactly
6
months apart when the Earth is at opposite points in its orbit around the Sun. The Sun, Earth, and star form the vertices of a right triangle with
∠
P
S
E
=
90
°
. The length of is the distance between the Earth and Sun. approximately
92
,
900
,
000
mi
. The parallax angle (or simply parallax) is denoted by
p
. Use this information for Exercises 31-32.
a. Find the distance between the Earth and Barnard's Star if the parallax angle is
0.547
arcseconds. Round to the nearest hundred billion miles.
b. Write the distance in part (a) in light-years. Round to
1
decimal place. (Hint
1
light-year is the distance that light travels in
1
yr
and is approximately
5.878
×
10
12
mi
.)
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY