For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement d as a function of the time t . (See Example 1) Initial Displacement d at t = 0 Amplitude Period or Frequency − 12 m 12 m 4 Hz
For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement d as a function of the time t . (See Example 1) Initial Displacement d at t = 0 Amplitude Period or Frequency − 12 m 12 m 4 Hz
Solution Summary: The author explains the model for the displacement of an object as a function of the time t.
For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement
d
as a function of the time
t
. (See Example 1)
Initial Displacement
d
at
t
=
0
Amplitude
Period or Frequency
−
12
m
12
m
4
Hz
Consider the following system of equations, Ax=b :
x+2y+3z - w = 2
2x4z2w = 3
-x+6y+17z7w = 0
-9x-2y+13z7w = -14
a. Find the solution to the system. Write it as a parametric equation. You can use a
computer to do the row reduction.
b. What is a geometric description of the solution? Explain how you know.
c. Write the solution in vector form?
d. What is the solution to the homogeneous system, Ax=0?
2. Find a matrix A with the following qualities
a. A is 3 x 3.
b. The matrix A is not lower triangular and is not upper triangular.
c. At least one value in each row is not a 1, 2,-1, -2, or 0
d. A is invertible.
Find the exact area inside r=2sin(2\theta ) and outside r=\sqrt(3)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY