To approximate the distance from the Earth to stars relatively close by. astronomers often use the method of parallax. Parallax is the apparent displacement of an object caused by a change in the observer's point of view. As the Earth orbits the Sun, a nearby star will appear to move against the more distant background stars. Astronomers measure a star's position at times exactly 6 months apart when the Earth is at opposite points in its orbit around the Sun. The Sun, Earth, and star form the vertices of a right triangle with ∠ P S E = 90 ° . The length of is the distance between the Earth and Sun. approximately 92 , 900 , 000 mi . The parallax angle (or simply parallax) is denoted by p . Use this information for Exercises 31-32. a. Find the distance between the Earth and Proxima Centauri (the closest star to the Earth beyond the Sun) if the parallax angle is 0.772 " (arcseconds). Round to the nearest hundred billion miles, b. Write the distance in part (a) in light-years. Round to 1 decimal place. (Hint. 1 light-year is the distance that light travels in 1 yr and is approximately 5.878 × 10 12 mi .)
To approximate the distance from the Earth to stars relatively close by. astronomers often use the method of parallax. Parallax is the apparent displacement of an object caused by a change in the observer's point of view. As the Earth orbits the Sun, a nearby star will appear to move against the more distant background stars. Astronomers measure a star's position at times exactly 6 months apart when the Earth is at opposite points in its orbit around the Sun. The Sun, Earth, and star form the vertices of a right triangle with ∠ P S E = 90 ° . The length of is the distance between the Earth and Sun. approximately 92 , 900 , 000 mi . The parallax angle (or simply parallax) is denoted by p . Use this information for Exercises 31-32. a. Find the distance between the Earth and Proxima Centauri (the closest star to the Earth beyond the Sun) if the parallax angle is 0.772 " (arcseconds). Round to the nearest hundred billion miles, b. Write the distance in part (a) in light-years. Round to 1 decimal place. (Hint. 1 light-year is the distance that light travels in 1 yr and is approximately 5.878 × 10 12 mi .)
Solution Summary: The author calculates the distance between the Earth and Proxima Centauri if the parallax angle is 0.772".
To approximate the distance from the Earth to stars relatively close by. astronomers often use the method of parallax. Parallax is the apparent displacement of an object caused by a change in the observer's point of view. As the Earth orbits the Sun, a nearby star will appear to move against the more distant background stars. Astronomers measure a star's position at times exactly
6
months apart when the Earth is at opposite points in its orbit around the Sun. The Sun, Earth, and star form the vertices of a right triangle with
∠
P
S
E
=
90
°
. The length of is the distance between the Earth and Sun. approximately
92
,
900
,
000
mi
. The parallax angle (or simply parallax) is denoted by
p
. Use this information for Exercises 31-32.
a. Find the distance between the Earth and Proxima Centauri (the closest star to the Earth beyond the Sun) if the parallax angle is
0.772
"
(arcseconds). Round to the nearest hundred billion miles,
b. Write the distance in part (a) in light-years. Round to
1
decimal place. (Hint.
1
light-year is the distance that light travels in
1
yr
and is approximately
5.878
×
10
12
mi
.)
Consider the following system of equations, Ax=b :
x+2y+3z - w = 2
2x4z2w = 3
-x+6y+17z7w = 0
-9x-2y+13z7w = -14
a. Find the solution to the system. Write it as a parametric equation. You can use a
computer to do the row reduction.
b. What is a geometric description of the solution? Explain how you know.
c. Write the solution in vector form?
d. What is the solution to the homogeneous system, Ax=0?
2. Find a matrix A with the following qualities
a. A is 3 x 3.
b. The matrix A is not lower triangular and is not upper triangular.
c. At least one value in each row is not a 1, 2,-1, -2, or 0
d. A is invertible.
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY