For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement d as a function of the time t . (See Example 1) Initial Displacement d at t = 0 Amplitude Period or Frequency 2.5 in . 2.5 in . 1.2 sec
For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement d as a function of the time t . (See Example 1) Initial Displacement d at t = 0 Amplitude Period or Frequency 2.5 in . 2.5 in . 1.2 sec
For Exercises 15-22, suppose that an object is attached to a horizontal spring subject to the given conditions. Find a model for the displacement
d
as a function of the time
t
. (See Example 1)
Initial Displacement
d
at
t
=
0
Amplitude
Period or Frequency
2.5
in
.
2.5
in
.
1.2
sec
Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below.
Let g(x) = √ƒƒ(t) dt .
0
3
2
-2
2
4
5
6
7
8
9
10
11
12
13
14
15
1. g(0) =
2. g(2) =
3. g(4) =
4. g(6) =
5. g'(3) =
6. g'(13)=
The expression 3 | (3+1/+1)
of the following integrals?
A
Ов
E
+
+
+ +
18
3+1+1
3++1
3++1
(A) √2×14 dx
x+1
(C) 1½-½√ √ ² ( 14 ) d x
(B) √31dx
(D) So 3+x
-dx
is a Riemann sum approximation of which
5
(E) 1½√√3dx
2x+1
2. Suppose the population of Wakanda t years after 2000 is given by the equation
f(t) = 45000(1.006). If this trend continues, in what year will the population reach 50,000
people? Show all your work, round your answer to two decimal places, and include units. (4
points)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY