Consider the linear transformation
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Differential Equations and Linear Algebra (4th Edition)
- Let T be a linear transformation from R2 into R2 such that T(1,2)=(1,0) and T(1,1)=(0,1). Find T(2,0) and T(0,3).arrow_forwardLet T:RnRm be the linear transformation defined by T(v)=Av, where A=[30100302]. Find the dimensions of Rn and Rm.arrow_forwardLet T be a linear transformation T such that T(v)=kv for v in Rn. Find the standard matrix for T.arrow_forward
- Let T:R4R2 be the linear transformation defined by T(v)=Av, where A=[10100101]. Find a basis for a the kernel of T and b the range of T. c Determine the rank and nullity of T.arrow_forwardLet T be a linear transformation from R3 into R such that T(1,1,1)=1, T(1,1,0)=2 and T(1,0,0)=3. Find T(0,1,1)arrow_forwardFind a basis for R2 that includes the vector (2,2).arrow_forward
- Prove that if A is similar to B and A is diagonalizable, then B is diagonalizable.arrow_forwardLet T:P2P4 be the linear transformation T(p)=x2p. Find the matrix for T relative to the bases B={1,x,x2} and B={1,x,x2,x3,x4}.arrow_forwardIn Exercises 1-12, determine whether T is a linear transformation. T:MnnMnn defines by T(A)=AB, where B is a fixed nn matrixarrow_forward
- Consider the matrices below. X=[1201],Y=[1032],Z=[3412],W=[3241] Find scalars a,b, and c such that W=aX+bY+cZ. Show that there do not exist scalars a and b such that Z=aX+bY. Show that if aX+bY+cZ=0, then a=b=c=0.arrow_forwardFor the linear transformation from Exercise 37, find a T(1,0,2,3), and b the preimage of (0,0,0). Linear Transformation Given by a Matrix In Exercises 33-38, define the linear transformations T:RnRm by T(v)=Av. Find the dimensions of Rn and Rm. A=[012114500131]arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage