For Problems 27-30, assume that
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Differential Equations and Linear Algebra (4th Edition)
- Find a basis B for R3 such that the matrix for the linear transformation T:R3R3, T(x,y,z)=(2x2z,2y2z,3x3z), relative to B is diagonal.arrow_forwardLet T be a linear transformation from R2 into R2 such that T(1,1)=(2,3) and T(0,2)=(0,8). Find T(2,4).arrow_forwardFind the kernel of the linear transformation T:R4R4, T(x1,x2,x3,x4)=(x1x2,x2x1,0,x3+x4).arrow_forward
- Show that the three points (x1,y1)(x2,y2) and (x3,y3) in the a plane are collinear if and only if the matrix [x1y11x2y21x3y31] has rank less than 3.arrow_forward1. Let Ta : ℝ2 → ℝ2 be the matrix transformation corresponding to . Find , where and .arrow_forwardFor the linear transformation T:R2R2 given by A=[abba] find a and b such that T(12,5)=(13,0).arrow_forward
- Let TA: 23 be the matrix transformation corresponding to A=[311124]. Find TA(u) and TA(v), where u=[12] v=[32].arrow_forwardExplain what it means in terms of an inverse for a matrix to have a 0 determinant.arrow_forwardLet T:RnRm be the linear transformation defined by T(v)=Av, where A=[30100302]. Find the dimensions of Rn and Rm.arrow_forward
- Consider the matrices R=[ 0110 ] H=[ 1001 ] V=[ 1001 ] D=[ 0110 ] T=[ 0110 ] in GL(2,), and let G={ I2,R,R2,R3,H,D,V,T }. Given that G is a group of order 8 with respect to multiplication, write out a multiplication table for G. Sec. 3.3,22b,32b Find the center Z(G) for each of the following groups G. b. G={ I2,R,R2,R3,H,D,V,T } in Exercise 36 of section 3.1. Find the centralizer for each element a in each of the following groups. b. G={ I2,R,R2,R3,H,D,V,T } in Exercise 36 of section 3.1 Sec. 4.1,22 22. Find an isomorphism from the octic group D4 in Example 12 of this section to the group G={ I2,R,R2,R3,H,D,V,T } in Exercise 36 of Section 3.1. Sec. 4.6,14 14. Let G={ I2,R,R2,R3,H,D,V,T } be the multiplicative group of matrices in Exercise 36 of section 3.1, let G={ 1,1 } under multiplication, and define :GG by ([ abcd ])=adbc. Assume that is an epimorphism, and find the elements of K= ker . Write out the distinct elements of G/K. Let :G/KG be the isomorphism described in the proof of Theorem 4.27, and write out the values of .arrow_forwarda Let T=[3001]. What effect does T have on the gray square in Table 1? b Let S=[1002]. What effect does S have on the gray square in Table 1? c Apply S to the vertices of the square, and then apply T to the result. What is the effect of the combined transformation? d Find the product matrix W=TS. e Apply the transformation W to the square. Compare to you final result in part c. What do you notice?arrow_forwardLet T be a linear transformation from R3 into R such that T(1,1,1)=1, T(1,1,0)=2 and T(1,0,0)=3. Find T(0,1,1)arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,