Projectile Motion The horizontal distance that a projectile will travel in the air (ignoring air resistance) is given by the equation R ( θ ) = v 0 2 sin ( 2 θ ) g where v 0 is the initial velocity of the projectile, θ is the angle of elevation, and g is acceleration due to gravity ( 9.8 meters per second squared). a. If you can throw a baseball with an initial speed of 34.8 meters per second, at what angle of elevation θ should you direct the throw so that the ball travels a distance of 107 meters before striking the ground? b. Determine the maximum distance that you can throw the ball. c. Graph R = R ( θ ) , with v 0 = 34.8 meters per second. d. Verify the results obtained in parts (a) and (b) using a graphing utility.
Projectile Motion The horizontal distance that a projectile will travel in the air (ignoring air resistance) is given by the equation R ( θ ) = v 0 2 sin ( 2 θ ) g where v 0 is the initial velocity of the projectile, θ is the angle of elevation, and g is acceleration due to gravity ( 9.8 meters per second squared). a. If you can throw a baseball with an initial speed of 34.8 meters per second, at what angle of elevation θ should you direct the throw so that the ball travels a distance of 107 meters before striking the ground? b. Determine the maximum distance that you can throw the ball. c. Graph R = R ( θ ) , with v 0 = 34.8 meters per second. d. Verify the results obtained in parts (a) and (b) using a graphing utility.
Solution Summary: The author calculates the horizontal distance that a projectile will travel in the air (ignoring air resistance) by the equation R ( ).
Projectile Motion The horizontal distance that a projectile will travel in the air (ignoring air resistance) is given by the equation
where
is the initial velocity of the projectile,
is the angle of elevation, and
is acceleration due to gravity (
meters per second squared).
a. If you can throw a baseball with an initial speed of
meters per second, at what angle of elevation
should you direct the throw so that the ball travels a distance of 107 meters before striking the ground?
b. Determine the maximum distance that you can throw the ball.
c. Graph
, with
meters per second.
d. Verify the results obtained in parts (a) and (b) using a graphing utility.
Find the general solution to the differential equation
charity
savings
Budget for May
travel
food
Peter earned $700 during May. The graph
shows how the money was used.
What fraction was clothes?
O Search
Submit
clothes
leisure
Exercise 11.3 A slope field is given for the equation y' = 4y+4.
(a) Sketch the particular solution that corresponds to y(0) = −2
(b) Find the constant solution
(c) For what initial conditions y(0) is the solution increasing?
(d) For what initial conditions y(0) is the solution decreasing?
(e) Verify these results using only the differential equation y' = 4y+4.
Chapter 6 Solutions
Pearson eText for Precalculus: Concepts Through Functions, A Right Triangle Approach to Trigonometry -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY