
Essentials of Statistics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780321926739
Author: Mario F. Triola
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.2, Problem 39BSC
To determine
To obtain: The cutoff values at the bottom 2.5% and top 2.5% that are considered as too low or too high.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
PEER REPLY 1:
Choose a classmate's Main Post and review their decision making process.
1. Choose a risk level for each of the states of nature (assign a probability
value to each).
2. Explain why each risk level is chosen.
3. Which alternative do you believe would be the best based on the maximum
EMV?
4. Do you feel determining the expected value with perfect information
(EVWPI) is worthwhile in this situation? Why or why not?
Questions
An insurance company's cumulative incurred claims for the last 5 accident years are given
in the following table:
Development Year
Accident Year 0
2018
1 2 3 4
245 267 274 289 292
2019
255 276 288 294
2020
265 283 292
2021
263 278
2022
271
It can be assumed that claims are fully run off after 4 years. The premiums received for
each year are:
Accident Year Premium
2018
306
2019
312
2020
318
2021
326
2022
330
You do not need to make any allowance for inflation.
1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method.
(b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method.
2. Comment on the differences in the reserves produced by the methods in Part 1.
You are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: o 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) o 10 States using Systematic Sampling (4 points: 1 for random numbers generation; 1 for random sample different from the previous answer; 1 for correct K value calculation table; 1 for correct sample drawn by using systematic sampling) (For systematic sampling, do not use the original data directly. Instead, first randomize the data, and then use the randomized dataset to draw your sample. Furthermore, do not use the random list previously generated, instead, generate a new random sample for this part. For more details, please see the snapshot provided at the end.) Upload a Microsoft Excel file with two separate sheets. One sheet provides random sampling while the other provides systematic sampling. Excel snapshots that can help you in organizing columns are provided on the next…
Chapter 6 Solutions
Essentials of Statistics, Books a la Carte Edition (5th Edition)
Ch. 6.2 - Normal Distribution When we refer to a normal...Ch. 6.2 - Normal Distribution A normal distribution is...Ch. 6.2 - Standard Normal Distribution Identify the...Ch. 6.2 - Notation What does the notation Z indicate?Ch. 6.2 - Continuous Uniform Distribution. In Exercises 58,...Ch. 6.2 - Continuous Uniform Distribution. In Exercises 58,...Ch. 6.2 - Continuous Uniform Distribution. In Exercises 58,...Ch. 6.2 - Continuous Uniform Distribution. In Exercises 58,...Ch. 6.2 - Prob. 9BSCCh. 6.2 - Standard Normal Distribution. In Exercises 912,...
Ch. 6.2 - Prob. 11BSCCh. 6.2 - Prob. 12BSCCh. 6.2 - Prob. 13BSCCh. 6.2 - Prob. 14BSCCh. 6.2 - Prob. 15BSCCh. 6.2 - Prob. 16BSCCh. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Prob. 26BSCCh. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Prob. 28BSCCh. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 1736,...Ch. 6.2 - Standard Normal Distribution. In Exercises 17-36,...Ch. 6.2 - Standard Normal Distribution. In Exercises 17-36,...Ch. 6.2 - Prob. 35BSCCh. 6.2 - Prob. 36BSCCh. 6.2 - Finding Bone Density Scores. In Exercises 37-40...Ch. 6.2 - Finding Bone Density Scores. In Exercises 37-40...Ch. 6.2 - Prob. 39BSCCh. 6.2 - Finding Bone Density Scores. In Exercises 37-40...Ch. 6.2 - Finding Critical Values. In Exercises 41-44, find...Ch. 6.2 - Prob. 42BSCCh. 6.2 - Prob. 43BSCCh. 6.2 - Prob. 44BSCCh. 6.2 - Prob. 45BSCCh. 6.2 - Prob. 46BSCCh. 6.2 - Prob. 47BSCCh. 6.2 - Prob. 48BSCCh. 6.2 - Prob. 49BBCh. 6.2 - Distributions In a continuous uniform...Ch. 6.3 - Pulse Rates Pulse rates of women are normally...Ch. 6.3 - IQ Scores The Wechsler Adult Intelligence Scale is...Ch. 6.3 - Prob. 3BSCCh. 6.3 - Random Digits Computers are commonly used to...Ch. 6.3 - IQ Scores. In Exercises 5-8, find the area of the...Ch. 6.3 - Prob. 6BSCCh. 6.3 - Prob. 7BSCCh. 6.3 - Prob. 8BSCCh. 6.3 - Prob. 9BSCCh. 6.3 - Prob. 10BSCCh. 6.3 - Prob. 11BSCCh. 6.3 - Prob. 12BSCCh. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - IQ Scores. In Exercises 13-20, assume that adults...Ch. 6.3 - In Exercises 21-24, use these parameters (based on...Ch. 6.3 - In Exercises 21-24, use these parameters (based on...Ch. 6.3 - Prob. 23BSCCh. 6.3 - In Exercises 21-24, use these parameters (based on...Ch. 6.3 - Water Taxi Safety When a water taxi sank in...Ch. 6.3 - Prob. 26BSCCh. 6.3 - Prob. 27BSCCh. 6.3 - Prob. 28BSCCh. 6.3 - Prob. 29BSCCh. 6.3 - Aircraft Seat Width Engineers want to design seats...Ch. 6.3 - Chocolate Chip Cookies The Chapter Problem for...Ch. 6.3 - Quarters After 1964, quarters were manufactured so...Ch. 6.3 - Large Data Sets. In Exercises 33 and 34, refer to...Ch. 6.3 - Prob. 34BSCCh. 6.3 - Curving Test Scores A statistics professor gives a...Ch. 6.3 - Using Continuity Correction There are many...Ch. 6.3 - Prob. 37BBCh. 6.3 - SAT and ACT Tests Based on recent results, scores...Ch. 6.4 - Minting Quarters In a recent year, the U.S. Mint...Ch. 6.4 - Sampling with Replacement In a recent year, the...Ch. 6.4 - Unbiased Estimators Data Set 1 in Appendix B...Ch. 6.4 - Prob. 4BSCCh. 6.4 - Prob. 5BSCCh. 6.4 - Prob. 6BSCCh. 6.4 - Prob. 7BSCCh. 6.4 - In Exercises 710, use the same population of {4,...Ch. 6.4 - In Exercises 710, use the same population of {4,...Ch. 6.4 - Prob. 10BSCCh. 6.4 - In Exercises 1114, use the population of ages {56,...Ch. 6.4 - In Exercises 1114, use the population of ages {56,...Ch. 6.4 - In Exercises 1114, use the population of ages {56,...Ch. 6.4 - Prob. 14BSCCh. 6.4 - Births: Sampling Distribution of Sample Proportion...Ch. 6.4 - Births: Sampling Distribution of Sample Proportion...Ch. 6.4 - SAT and ACT Tests Because they enable efficient...Ch. 6.4 - Quality Control After constructing a new...Ch. 6.4 - Prob. 19BBCh. 6.4 - Prob. 20BBCh. 6.5 - Standard Error of the Mean The population of...Ch. 6.5 - Small Sample Heights of adult females are normally...Ch. 6.5 - Notation The population of distances that adult...Ch. 6.5 - Prob. 4BSCCh. 6.5 - Using the Central Limit Theorem. In Exercises 510,...Ch. 6.5 - Using the Central Limit Theorem. In Exercises 510,...Ch. 6.5 - Using the Central Limit Theorem. In Exercises 510,...Ch. 6.5 - Using the Central Limit Theorem. In Exercises 510,...Ch. 6.5 - Using the Central Limit Theorem. In Exercises 510,...Ch. 6.5 - Using the Central Limit Theorem. In Exercises 510,...Ch. 6.5 - Prob. 11BSCCh. 6.5 - Prob. 12BSCCh. 6.5 - Designing Hats Women have head circumferences that...Ch. 6.5 - Designing Manholes According to the website...Ch. 6.5 - Prob. 15BSCCh. 6.5 - Loading MM Packages MM plain candies have a mean...Ch. 6.5 - Prob. 17BSCCh. 6.5 - Pulse Rates of Women Women have pulse rates that...Ch. 6.5 - Redesign of Ejection Seats When women were allowed...Ch. 6.5 - Loading a Tour Boat The Ethan Allen tour boat...Ch. 6.5 - Doorway Height The Boeing 757-200 ER airliner...Ch. 6.5 - Loading Aircraft Before every flight, the pilot...Ch. 6.5 - Prob. 23BBCh. 6.5 - Population Parameters Use the same population of...Ch. 6.6 - Normal Quantile Plot Data Set 1 in Appendix B...Ch. 6.6 - Prob. 2BSCCh. 6.6 - Prob. 3BSCCh. 6.6 - Prob. 4BSCCh. 6.6 - Prob. 5BSCCh. 6.6 - Interpreting Normal Quantile Plots. In Exercises...Ch. 6.6 - Prob. 7BSCCh. 6.6 - Interpreting Normal Quantile Plots. In Exercises...Ch. 6.6 - Prob. 9BSCCh. 6.6 - Determining Normality. In Exercises 912, refer to...Ch. 6.6 - Determining Normality. In Exercises 912, refer to...Ch. 6.6 - Prob. 12BSCCh. 6.6 - Prob. 13BSCCh. 6.6 - Prob. 14BSCCh. 6.6 - Using Technology to Generate Normal Quantile...Ch. 6.6 - Prob. 16BSCCh. 6.6 - Prob. 17BSCCh. 6.6 - Constructing Normal Quantile Plots. In Exercises...Ch. 6.6 - Prob. 19BSCCh. 6.6 - Prob. 20BSCCh. 6.6 - Transformations The heights (in inches) of men...Ch. 6.6 - Earthquake Magnitudes Richter scale earthquake...Ch. 6.6 - Prob. 23BBCh. 6.7 - Exact Value and Approximation Refer to Figure 6-21...Ch. 6.7 - Continuity Correction In a preliminary test of the...Ch. 6.7 - Prob. 3BSCCh. 6.7 - Prob. 4BSCCh. 6.7 - Prob. 5BSCCh. 6.7 - Prob. 6BSCCh. 6.7 - Prob. 7BSCCh. 6.7 - Prob. 8BSCCh. 6.7 - Prob. 9BSCCh. 6.7 - Prob. 10BSCCh. 6.7 - Voters. In Exercises 912, use a normal...Ch. 6.7 - Prob. 12BSCCh. 6.7 - Prob. 13BSCCh. 6.7 - Prob. 14BSCCh. 6.7 - Mendelian Genetics When Mendel conducted his...Ch. 6.7 - Prob. 16BSCCh. 6.7 - XSORT Gender Selection MicroSorts XSORT...Ch. 6.7 - Prob. 18BSCCh. 6.7 - Prob. 19BSCCh. 6.7 - Cell Phones and Brain Cancer In a study of 420,095...Ch. 6.7 - Prob. 21BSCCh. 6.7 - Prob. 22BSCCh. 6.7 - Prob. 23BSCCh. 6.7 - Prob. 24BSCCh. 6.7 - Decision Theory Marc Taylor plans to place 200...Ch. 6.7 - Prob. 26BBCh. 6 - Identify the values of and for the standard...Ch. 6 - Bone Density Test. In Exercises 1-4, assume that...Ch. 6 - Prob. 3CQQCh. 6 - Prob. 4CQQCh. 6 - Prob. 5CQQCh. 6 - Prob. 6CQQCh. 6 - In Exercises 6-10, assume that red blood cell...Ch. 6 - Prob. 8CQQCh. 6 - Prob. 9CQQCh. 6 - Prob. 10CQQCh. 6 - Prob. 1RECh. 6 - Prob. 2RECh. 6 - Window Placement Standing eye heights of men are...Ch. 6 - Sampling Distributions Scores on the ACT test have...Ch. 6 - Prob. 5RECh. 6 - Monorail and Airliner Doors The Mark VI monorail...Ch. 6 - Aircraft Safety Standards Under older Federal...Ch. 6 - Assessing Normality Listed below are the current...Ch. 6 - Prob. 9RECh. 6 - Prob. 10RECh. 6 - Miami Heat The following are current annual...Ch. 6 - Prob. 2CRECh. 6 - Birth Weights Birth weights in the United States...Ch. 6 - POTUS The accompanying graph is a histogram of...Ch. 6 - Left-Handedness According to data from the...Ch. 6 - Binomial Probabilities Section 6-7 described a...Ch. 6 - Prob. 1FDDCh. 6 - Prob. 2FDDCh. 6 - Prob. 3FDDCh. 6 - Critical Thinking: Designing aircraft seats When...Ch. 6 - Critical Thinking: Designing aircraft seats When...Ch. 6 - Critical Thinking: Designing aircraft seats When...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual. For a sample of n = 65, find the probability of a sample mean being greater than 225 if μ = 224 and σ = 3.5. For a sample of n = 65, the probability of a sample mean being greater than 225 if μ=224 and σ = 3.5 is 0.0102 (Round to four decimal places as needed.)arrow_forward***Please do not just simply copy and paste the other solution for this problem posted on bartleby as that solution does not have all of the parts completed for this problem. Please answer this I will leave a like on the problem. The data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forwardThe data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forward
- The following relates to Problems 4 and 5. Christchurch, New Zealand experienced a major earthquake on February 22, 2011. It destroyed 100,000 homes. Data were collected on a sample of 300 damaged homes. These data are saved in the file called CIEG315 Homework 4 data.xlsx, which is available on Canvas under Files. A subset of the data is shown in the accompanying table. Two of the variables are qualitative in nature: Wall construction and roof construction. Two of the variables are quantitative: (1) Peak ground acceleration (PGA), a measure of the intensity of ground shaking that the home experienced in the earthquake (in units of acceleration of gravity, g); (2) Damage, which indicates the amount of damage experienced in the earthquake in New Zealand dollars; and (3) Building value, the pre-earthquake value of the home in New Zealand dollars. PGA (g) Damage (NZ$) Building Value (NZ$) Wall Construction Roof Construction Property ID 1 0.645 2 0.101 141,416 2,826 253,000 B 305,000 B T 3…arrow_forwardRose Par posted Apr 5, 2025 9:01 PM Subscribe To: Store Owner From: Rose Par, Manager Subject: Decision About Selling Custom Flower Bouquets Date: April 5, 2025 Our shop, which prides itself on selling handmade gifts and cultural items, has recently received inquiries from customers about the availability of fresh flower bouquets for special occasions. This has prompted me to consider whether we should introduce custom flower bouquets in our shop. We need to decide whether to start offering this new product. There are three options: provide a complete selection of custom bouquets for events like birthdays and anniversaries, start small with just a few ready-made flower arrangements, or do not add flowers. There are also three possible outcomes. First, we might see high demand, and the bouquets could sell quickly. Second, we might have medium demand, with a few sold each week. Third, there might be low demand, and the flowers may not sell well, possibly going to waste. These outcomes…arrow_forwardConsider the state space model X₁ = §Xt−1 + Wt, Yt = AX+Vt, where Xt Є R4 and Y E R². Suppose we know the covariance matrices for Wt and Vt. How many unknown parameters are there in the model?arrow_forward
- Business Discussarrow_forwardYou want to obtain a sample to estimate the proportion of a population that possess a particular genetic marker. Based on previous evidence, you believe approximately p∗=11% of the population have the genetic marker. You would like to be 90% confident that your estimate is within 0.5% of the true population proportion. How large of a sample size is required?n = (Wrong: 10,603) Do not round mid-calculation. However, you may use a critical value accurate to three decimal places.arrow_forward2. [20] Let {X1,..., Xn} be a random sample from Ber(p), where p = (0, 1). Consider two estimators of the parameter p: 1 p=X_and_p= n+2 (x+1). For each of p and p, find the bias and MSE.arrow_forward
- 1. [20] The joint PDF of RVs X and Y is given by xe-(z+y), r>0, y > 0, fx,y(x, y) = 0, otherwise. (a) Find P(0X≤1, 1arrow_forward4. [20] Let {X1,..., X} be a random sample from a continuous distribution with PDF f(x; 0) = { Axe 5 0, x > 0, otherwise. where > 0 is an unknown parameter. Let {x1,...,xn} be an observed sample. (a) Find the value of c in the PDF. (b) Find the likelihood function of 0. (c) Find the MLE, Ô, of 0. (d) Find the bias and MSE of 0.arrow_forward3. [20] Let {X1,..., Xn} be a random sample from a binomial distribution Bin(30, p), where p (0, 1) is unknown. Let {x1,...,xn} be an observed sample. (a) Find the likelihood function of p. (b) Find the MLE, p, of p. (c) Find the bias and MSE of p.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License