The shelf life (in years) of a laser pointer battery is a continuous random variable with probability density function f ( x ) = { 1 / ( x + 1 ) 2 i f x ≥ 0 0 otherwise (A) Find the probability that a randomly selected laser pointer battery has a shelf life of 3 years or less. (B) Find the probability that a randomly selected laser pointer battery has a shelf life of from 3 to 9 years. (C) Graph y = f ( x ) for [0, 10] and show the shaded region for part (A).
The shelf life (in years) of a laser pointer battery is a continuous random variable with probability density function f ( x ) = { 1 / ( x + 1 ) 2 i f x ≥ 0 0 otherwise (A) Find the probability that a randomly selected laser pointer battery has a shelf life of 3 years or less. (B) Find the probability that a randomly selected laser pointer battery has a shelf life of from 3 to 9 years. (C) Graph y = f ( x ) for [0, 10] and show the shaded region for part (A).
Solution Summary: The author explains that the probability of a randomly selected laser pointer battery having 3 years or less is 0.75.
a) Find the scalars p, q, r, s, k1, and k2.
b) Is there a different linearly independent eigenvector associated to either k1 or k2? If yes,find it. If no, briefly explain.
Plz no chatgpt answer Plz
Will upvote
1/ Solve the following:
1 x +
X + cos(3X)
-75
-1
2
2
(5+1) e
5² + 5 + 1
3 L
-1
1
5² (5²+1)
1
5(5-5)
Chapter 6 Solutions
Calculus for Business Economics Life Sciences and Social Sciences Plus NEW
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License