For Exercises 21-24, assume that b and c represent positive integers. When factoring a polynomial of the form x 2 + b x + c , pick an appropriate combination of signs. a. ( + ) ( + ) b. ( − ) ( − ) c. ( + ) ( − )
For Exercises 21-24, assume that b and c represent positive integers. When factoring a polynomial of the form x 2 + b x + c , pick an appropriate combination of signs. a. ( + ) ( + ) b. ( − ) ( − ) c. ( + ) ( − )
Solution Summary: The author explains that the signs of both factors of binomials depend on sign of c in the provided polynomial expression.
show that v3 = (−√3, −3, 3)⊤ is an eigenvector of M3 . Also here find the correspondingeigenvalue λ3 . Just from looking at M3 and its components, can you say something about the remaining twoeigenvalues? If so, what would you say?
find v42 so that v4 = ( 2/5, v42, 1)⊤ is an eigenvector of M4 with corresp. eigenvalue λ4 = 45
Chapter 4 Quiz 2 As always, show your work. 1) FindΘgivencscΘ=1.045.
2) Find Θ given sec Θ = 4.213.
3) Find Θ given cot Θ = 0.579. Solve the following three right triangles.
B
21.0
34.6° ca
52.5
4)c
26°
5)
A
b
6) B 84.0 a
42°
b
Q1: A: Let M and N be two subspace of finite dimension linear space X, show that if M = N
then dim M = dim N but the converse need not to be true.
B: Let A and B two balanced subsets of a linear space X, show that whether An B and
AUB are balanced sets or nor.
Q2: Answer only two
A:Let M be a subset of a linear space X, show that M is a hyperplane of X iff there exists
ƒ€ X'/{0} and a € F such that M = (x = x/f&x) = x}.
fe
B:Show that every two norms on finite dimension linear space are equivalent
C: Let f be a linear function from a normed space X in to a normed space Y, show that
continuous at x, E X iff for any sequence (x) in X converge to Xo then the sequence
(f(x)) converge to (f(x)) in Y.
Q3: A:Let M be a closed subspace of a normed space X, constract a linear space X/M as
normed space
B: Let A be a finite dimension subspace of a Banach space X, show that A is closed.
C: Show that every finite dimension normed space is Banach space.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.