
EBK THOMAS' CALCULUS
14th Edition
ISBN: 9780134654874
Author: WEIR
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.2, Problem 13E
(a)
To determine
Prove that
(b)
To determine
Calculate the volume of the solid by revolving the region about y axis.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
An object of mass 4 kg is given an initial downward velocity of 60 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is - 8v, where v is the velocity
of the object in m/sec. Determine the equation of motion of the object. If the object is initially 500 m above the ground, determine when the object will strike the ground. Assume that the acceleration due to gravity
is 9.81 m/sec² and let x(t) represent the distance the object has fallen in t seconds.
Determine the equation of motion of the object.
x(t) =
(Use integers or decimals for any numbers in the expression. Round to two decimal places as needed.)
Early Monday morning, the temperature in the lecture hall has fallen to 40°F, the same as the temperature outside. At 7:00 A.M., the janitor turns on the furnace with the thermostat set at 72°F. The time constant
for the building is = 3 hr and that for the building along with its heating system is
1
K
A.M.? When will the temperature inside the hall reach 71°F?
1
=
1
hr. Assuming that the outside temperature remains constant, what will be the temperature inside the lecture hall at 8:30
2
At 8:30 A.M., the temperature inside the lecture hall will be about
(Round to the nearest tenth as needed.)
1°F.
Find the maximum volume of a rectangular box whose surface area is 1500 cm² and whose total edge
length is 200 cm.
cm³
Chapter 6 Solutions
EBK THOMAS' CALCULUS
Ch. 6.1 - Prob. 1ECh. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...
Ch. 6.1 - Find the volume of the given right tetrahedron....Ch. 6.1 - Prob. 12ECh. 6.1 - A twisted solid A square of side length s lies in...Ch. 6.1 - Prob. 14ECh. 6.1 - Intersection of two half-cylinders Two...Ch. 6.1 - Gasoline in a tank A gasoline tank is in the shape...Ch. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - In Exercises 31 and 32, find the volume of the...Ch. 6.1 - In Exercises 31 and 32, find the volume of the...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 35ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - Prob. 44ECh. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - By integration, find the volume of the solid...Ch. 6.1 - The volume of a torus The disk x2 + y2 ≤ a2 is...Ch. 6.1 - Prob. 54ECh. 6.1 - Prob. 55ECh. 6.1 - Prob. 56ECh. 6.1 - Volume of a hemisphere Derive the formula V =...Ch. 6.1 - Designing a plumb bob Having been asked to design...Ch. 6.1 - Designing a wok You are designing a wok frying pan...Ch. 6.1 - Max-min The arch y = sin x, 0 ≤ x ≤ π, is revolved...Ch. 6.1 - Prob. 61ECh. 6.1 - Prob. 62ECh. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 9ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 17ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 27 and 28, use the shell method to...Ch. 6.2 - Prob. 28ECh. 6.2 - For some regions, both the washer and shell...Ch. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - In Exercises 31–36, find the volumes of the solids...Ch. 6.2 - Prob. 35ECh. 6.2 - In Exercises 31–36, find the volumes of the solids...Ch. 6.2 - Prob. 37ECh. 6.2 - The region in the first quadrant that is bounded...Ch. 6.2 - The region shown here is to be revolved about the...Ch. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Consider the region R bounded by the graphs of y =...Ch. 6.2 - Consider the region R given in Exercise 45. If the...Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - Find a curve with a positive derivative through...Ch. 6.3 - Prob. 22ECh. 6.3 - Find the length of the curve
from x = 0 to x =...Ch. 6.3 - The length of an astroid The graph of the equation...Ch. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - If 9x2 = y(y − 3)2, that
Ch. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Find the arc length function for the graph of f(x)...Ch. 6.3 - Prob. 34ECh. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 3ECh. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Find the lateral (side) surface area of the cone...Ch. 6.4 - Find the lateral surface area of the cone...Ch. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 14ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - The surface of an astroid Find the area of the...Ch. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Stretching a spring A spring has a natural length...Ch. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Subway car springs It takes a force of 21,714 lb...Ch. 6.5 - Bathroom scale A bathroom scale is compressed 1/16...Ch. 6.5 - Lifting a rope A mountain climber is about to haul...Ch. 6.5 - Leaky sandbag A bag of sand originally weighing...Ch. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Leaky bucket Assume the bucket in Example 4 is...Ch. 6.5 - Prob. 14ECh. 6.5 - Pumping water The rectangular tank shown here,...Ch. 6.5 - Emptying a cistern The rectangular cistern...Ch. 6.5 - Pumping oil How much work would it take to pump...Ch. 6.5 - Prob. 18ECh. 6.5 - Emptying a tank A vertical right-circular...Ch. 6.5 - Prob. 20ECh. 6.5 - The graph of y = x2 on 0 ≤ x ≤ 2 is revolved about...Ch. 6.5 - A right-circular cylindrical tank of height 10 ft...Ch. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - In Exercises 26–30, use the result of Exercise...Ch. 6.5 - Prob. 28ECh. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Water tower Your town has decided to drill a well...Ch. 6.5 - Prob. 33ECh. 6.5 - Forcing electrons together Two electrons r meters...Ch. 6.5 - Triangular plate Calculate the fluid force on one...Ch. 6.5 - Triangular plate Calculate the fluid force on one...Ch. 6.5 - Prob. 37ECh. 6.5 - Prob. 38ECh. 6.5 - Triangular plate The isosceles triangular plate...Ch. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - Prob. 42ECh. 6.5 - Prob. 43ECh. 6.5 - Prob. 44ECh. 6.5 - Prob. 45ECh. 6.5 - Prob. 46ECh. 6.5 - Prob. 47ECh. 6.5 - Prob. 48ECh. 6.5 - Prob. 49ECh. 6.5 - Watering trough The vertical ends of a watering...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - Prob. 5ECh. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.6 - Prob. 12ECh. 6.6 - Prob. 13ECh. 6.6 - Prob. 14ECh. 6.6 - Prob. 15ECh. 6.6 - Prob. 16ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 18ECh. 6.6 - Prob. 19ECh. 6.6 - Prob. 20ECh. 6.6 - Prob. 21ECh. 6.6 - Prob. 22ECh. 6.6 - The region bounded by the curves and the lines x...Ch. 6.6 - Prob. 24ECh. 6.6 - Prob. 25ECh. 6.6 - Prob. 26ECh. 6.6 - Prob. 27ECh. 6.6 - Prob. 28ECh. 6.6 - Prob. 29ECh. 6.6 - Prob. 30ECh. 6.6 - Prob. 31ECh. 6.6 - Prob. 32ECh. 6.6 - Prob. 33ECh. 6.6 - Prob. 34ECh. 6.6 - In Exercises 37-40, find the centroid of the thin...Ch. 6.6 - Prob. 36ECh. 6.6 - In Exercises 37-40, find the centroid of the thin...Ch. 6.6 - Prob. 38ECh. 6.6 - Prob. 39ECh. 6.6 - Prob. 40ECh. 6.6 - Prob. 41ECh. 6.6 - Use a theorem of Pappus to find the volume...Ch. 6.6 - Prob. 43ECh. 6.6 - Prob. 44ECh. 6.6 - Use Pappus’s Theorem for surface area and the fact...Ch. 6.6 - Prob. 46ECh. 6.6 - The area of the region R enclosed by the...Ch. 6.6 - As found in Example 8, the centroid of the region...Ch. 6.6 - Prob. 49ECh. 6.6 - Prob. 50ECh. 6.6 - Prob. 51ECh. 6.6 - Prob. 52ECh. 6 - Prob. 1GYRCh. 6 - How are the disk and washer methods for...Ch. 6 - Prob. 3GYRCh. 6 - How do you find the length of the graph of a...Ch. 6 - How do you define and calculate the area of the...Ch. 6 - Prob. 6GYRCh. 6 - What is a center of mass? What is a centroid?
Ch. 6 - Prob. 8GYRCh. 6 - Prob. 9GYRCh. 6 - How do you locate the center of mass of a thin...Ch. 6 - Prob. 1PECh. 6 - Prob. 2PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 4PECh. 6 - Prob. 5PECh. 6 - Prob. 6PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 8PECh. 6 - Prob. 9PECh. 6 - Prob. 10PECh. 6 - Prob. 11PECh. 6 - Prob. 12PECh. 6 - Prob. 13PECh. 6 - Prob. 14PECh. 6 - Prob. 15PECh. 6 - Prob. 16PECh. 6 - Prob. 17PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 19PECh. 6 - Prob. 20PECh. 6 - Lengths of Curves
Find the lengths of the curves...Ch. 6 - Prob. 22PECh. 6 - Prob. 23PECh. 6 - Prob. 24PECh. 6 - Prob. 25PECh. 6 - Prob. 26PECh. 6 - Prob. 27PECh. 6 - Prob. 28PECh. 6 - Prob. 29PECh. 6 - Prob. 30PECh. 6 - Prob. 31PECh. 6 - Pumping a reservoir (Continuation of Exercise 31.)...Ch. 6 - Prob. 33PECh. 6 - Pumping a cylindrical tank A storage tank is a...Ch. 6 - Prob. 35PECh. 6 - Prob. 36PECh. 6 - Prob. 37PECh. 6 - Prob. 38PECh. 6 - Prob. 39PECh. 6 - Prob. 40PECh. 6 - Prob. 41PECh. 6 - Prob. 42PECh. 6 - Prob. 43PECh. 6 - Prob. 44PECh. 6 - Prob. 45PECh. 6 - Prob. 46PECh. 6 - Prob. 1AAECh. 6 - Prob. 2AAECh. 6 - Prob. 3AAECh. 6 - Prob. 4AAECh. 6 - Prob. 5AAECh. 6 - Consider a right-circular cylinder of diameter 1....Ch. 6 - Prob. 7AAECh. 6 - Prob. 8AAECh. 6 - Prob. 9AAECh. 6 - Prob. 10AAECh. 6 - Prob. 11AAECh. 6 - Prob. 12AAECh. 6 - Prob. 13AAECh. 6 - Prob. 14AAECh. 6 - Prob. 15AAECh. 6 - Prob. 16AAECh. 6 - Prob. 17AAECh. 6 - Prob. 18AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Find the minimum cost of a rectangular box of volume 120 cm³ whose top and bottom cost 6 cents per cm² and whose sides cost 5 cents per cm². Round your answer to nearest whole number cents. Cost = cents.arrow_forwardFind the absolute extrema of the function f(x, y) = x² + y² - 3x-3y+3 on the domain defined by x² + y² <9. Round answers to 3 decimals or more. Absolute Maximum: Absolute Minimum:arrow_forwardFind the maximum and minimum values of the function f(x, y) = e² subject to ï³ + y³ = 128 Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist. Maximum value:arrow_forward
- A chemical manufacturing plant can produce x units of chemical Z given p units of chemical P and 7 units of chemical R, where: z = 140p0.6,0.4 Chemical P costs $300 a unit and chemical R costs $1,500 a unit. The company wants to produce as many units of chemical Z as possible with a total budget of $187,500. A) How many units each chemical (P and R) should be "purchased" to maximize production of chemical Z subject to the budgetary constraint? Units of chemical P, p = Units of chemical R, r = B) What is the maximum number of units of chemical Z under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production, z= unitsarrow_forwardA firm manufactures a commodity at two different factories, Factory X and Factory Y. The total cost (in dollars) of manufacturing depends on the quantities, and y produced at each factory, respectively, and is expressed by the joint cost function: C(x, y) = x² + xy +4y²+400 A) If the company's objective is to produce 1,900 units per month while minimizing the total monthly cost of production, how many units should be produced at each factory? (Round your answer to whole units, i.e. no decimal places.) To minimize costs, the company should produce: units at Factory X and units at Factory Y B) For this combination of units, their minimal costs will be enter any commas in your answer.) Question Help: Video dollars. (Do notarrow_forwarduse Lagrange multipliers to solvearrow_forward
- Suppose a Cobb-Douglas Production function is given by the following: P(L,K)=80L0.75 K-0.25 where L is units of labor, K is units of capital, and P(L, K) is total units that can be produced with this labor/capital combination. Suppose each unit of labor costs $400 and each unit of capital costs $1,600. Further suppose a total of $384,000 is available to be invested in labor and capital (combined). A) How many units of labor and capital should be "purchased" to maximize production subject to your budgetary constraint? Units of labor, L = Units of capital, K = B) What is the maximum number of units of production under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production = unitsarrow_forwardSuppose a Cobb-Douglas Production function is given by the function: P(L, K) = 7L0.0 K0.4 Furthemore, the cost function for a facility is given by the function: C(L, K) = 100L +400K Suppose the monthly production goal of this facility is to produce 15,000 items. In this problem, we will assume L represents units of labor invested and K represents units of capital invested, and that you can invest in tenths of units for each of these. What allocation of labor and capital will minimize total production Costs? Units of Labor L = Units of Capital K = (Show your answer is exactly 1 decimal place) (Show your answer is exactly 1 decimal place) Also, what is the minimal cost to produce 15,000 units? (Use your rounded values for L and K from above to answer this question.) The minimal cost to produce 15,000 units is $ Hint: 1. Your constraint equation involves the Cobb Douglas Production function, not the Cost function. 2. When finding a relationship between L and K in your system of equations,…arrow_forwardFind the absolute maximum and minimum of f(x, y) = x + y within the domain x² + y² ≤ 4. Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist. 1. Absolute minimum of f(x, y) isarrow_forward
- Suppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7 each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where I and y are the demand functions and 0 < x,y. Then as x = y = the factory can attain the maximum profit,arrow_forwardEvaluate the following integrals, showing all your workingarrow_forwardConsider the function f(x) = 2x³-4x2-x+1. (a) Without doing a sketch, show that the cubic equation has at least one solution on the interval [0,1]. Use a theorem discussed in lectures, or see Section 1.8 of Calculus (7th ed) by Stewart. Ensure that the conditions of the theorem are satisfied (include this in your solution) (b) Now, by sketching the cubic (by hand or by computer), you should see that there is, in fact, exactly one zero in the interval [0,1]. Use Newton's method to find this zero accurate to 3 decimal places. You should include a sketch of the cubic, Newton's iteration formula, and the list of iterates. [Use a computer if possible, e.g., a spreadsheet or MatLab.]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY