
EBK THOMAS' CALCULUS
14th Edition
ISBN: 9780134654874
Author: WEIR
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 9PE
(a)
To determine
Calculate the volume of the solid about the x axis.
(b)
To determine
Calculate the volume of the solid about the y axis.
(c)
To determine
Calculate the volume of the solid about the line
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Use Laplace transform to solve the initial value problem
y' + y = tsin(t), y(0) = 0
The function g is defined by
g(x) = sec² x + tan x. What are all
solutions to g(x) = 1 on the interval
0 ≤ x ≤ 2π ?
A
x =
= 0, x
==
= 3,
x = π,
x =
7
4
,
4
and x 2π only
=
B
x =
4'
1, x = 1, x = 57
and x = 3 only
C
x =
πk and x =
- +πk
D
,
where is any integer
П
x = +πk and
П
x =
+πk, where k is
any integer
Vector v = PQ has initial point P (2, 14) and terminal point Q (7, 3). Vector v = RS has initial point R (29, 8) and terminal point S (12, 17).
Part A: Write u and v in linear form. Show all necessary work.
Part B: Write u and v in trigonometric form. Show all necessary work.
Part C: Find 7u − 4v. Show all necessary calculations.
Chapter 6 Solutions
EBK THOMAS' CALCULUS
Ch. 6.1 - Prob. 1ECh. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...
Ch. 6.1 - Find the volume of the given right tetrahedron....Ch. 6.1 - Prob. 12ECh. 6.1 - A twisted solid A square of side length s lies in...Ch. 6.1 - Prob. 14ECh. 6.1 - Intersection of two half-cylinders Two...Ch. 6.1 - Gasoline in a tank A gasoline tank is in the shape...Ch. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - In Exercises 31 and 32, find the volume of the...Ch. 6.1 - In Exercises 31 and 32, find the volume of the...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 35ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - Prob. 44ECh. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - By integration, find the volume of the solid...Ch. 6.1 - The volume of a torus The disk x2 + y2 ≤ a2 is...Ch. 6.1 - Prob. 54ECh. 6.1 - Prob. 55ECh. 6.1 - Prob. 56ECh. 6.1 - Volume of a hemisphere Derive the formula V =...Ch. 6.1 - Designing a plumb bob Having been asked to design...Ch. 6.1 - Designing a wok You are designing a wok frying pan...Ch. 6.1 - Max-min The arch y = sin x, 0 ≤ x ≤ π, is revolved...Ch. 6.1 - Prob. 61ECh. 6.1 - Prob. 62ECh. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 9ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 17ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 27 and 28, use the shell method to...Ch. 6.2 - Prob. 28ECh. 6.2 - For some regions, both the washer and shell...Ch. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - In Exercises 31–36, find the volumes of the solids...Ch. 6.2 - Prob. 35ECh. 6.2 - In Exercises 31–36, find the volumes of the solids...Ch. 6.2 - Prob. 37ECh. 6.2 - The region in the first quadrant that is bounded...Ch. 6.2 - The region shown here is to be revolved about the...Ch. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Consider the region R bounded by the graphs of y =...Ch. 6.2 - Consider the region R given in Exercise 45. If the...Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - In Exercises 17-24, do the following.
Set up an...Ch. 6.3 - Find a curve with a positive derivative through...Ch. 6.3 - Prob. 22ECh. 6.3 - Find the length of the curve
from x = 0 to x =...Ch. 6.3 - The length of an astroid The graph of the equation...Ch. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - If 9x2 = y(y − 3)2, that
Ch. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Find the arc length function for the graph of f(x)...Ch. 6.3 - Prob. 34ECh. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 3ECh. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Find the lateral (side) surface area of the cone...Ch. 6.4 - Find the lateral surface area of the cone...Ch. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 14ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - The surface of an astroid Find the area of the...Ch. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Stretching a spring A spring has a natural length...Ch. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Subway car springs It takes a force of 21,714 lb...Ch. 6.5 - Bathroom scale A bathroom scale is compressed 1/16...Ch. 6.5 - Lifting a rope A mountain climber is about to haul...Ch. 6.5 - Leaky sandbag A bag of sand originally weighing...Ch. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Leaky bucket Assume the bucket in Example 4 is...Ch. 6.5 - Prob. 14ECh. 6.5 - Pumping water The rectangular tank shown here,...Ch. 6.5 - Emptying a cistern The rectangular cistern...Ch. 6.5 - Pumping oil How much work would it take to pump...Ch. 6.5 - Prob. 18ECh. 6.5 - Emptying a tank A vertical right-circular...Ch. 6.5 - Prob. 20ECh. 6.5 - The graph of y = x2 on 0 ≤ x ≤ 2 is revolved about...Ch. 6.5 - A right-circular cylindrical tank of height 10 ft...Ch. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - In Exercises 26–30, use the result of Exercise...Ch. 6.5 - Prob. 28ECh. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Water tower Your town has decided to drill a well...Ch. 6.5 - Prob. 33ECh. 6.5 - Forcing electrons together Two electrons r meters...Ch. 6.5 - Triangular plate Calculate the fluid force on one...Ch. 6.5 - Triangular plate Calculate the fluid force on one...Ch. 6.5 - Prob. 37ECh. 6.5 - Prob. 38ECh. 6.5 - Triangular plate The isosceles triangular plate...Ch. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - Prob. 42ECh. 6.5 - Prob. 43ECh. 6.5 - Prob. 44ECh. 6.5 - Prob. 45ECh. 6.5 - Prob. 46ECh. 6.5 - Prob. 47ECh. 6.5 - Prob. 48ECh. 6.5 - Prob. 49ECh. 6.5 - Watering trough The vertical ends of a watering...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - Prob. 5ECh. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.6 - Prob. 12ECh. 6.6 - Prob. 13ECh. 6.6 - Prob. 14ECh. 6.6 - Prob. 15ECh. 6.6 - Prob. 16ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 18ECh. 6.6 - Prob. 19ECh. 6.6 - Prob. 20ECh. 6.6 - Prob. 21ECh. 6.6 - Prob. 22ECh. 6.6 - The region bounded by the curves and the lines x...Ch. 6.6 - Prob. 24ECh. 6.6 - Prob. 25ECh. 6.6 - Prob. 26ECh. 6.6 - Prob. 27ECh. 6.6 - Prob. 28ECh. 6.6 - Prob. 29ECh. 6.6 - Prob. 30ECh. 6.6 - Prob. 31ECh. 6.6 - Prob. 32ECh. 6.6 - Prob. 33ECh. 6.6 - Prob. 34ECh. 6.6 - In Exercises 37-40, find the centroid of the thin...Ch. 6.6 - Prob. 36ECh. 6.6 - In Exercises 37-40, find the centroid of the thin...Ch. 6.6 - Prob. 38ECh. 6.6 - Prob. 39ECh. 6.6 - Prob. 40ECh. 6.6 - Prob. 41ECh. 6.6 - Use a theorem of Pappus to find the volume...Ch. 6.6 - Prob. 43ECh. 6.6 - Prob. 44ECh. 6.6 - Use Pappus’s Theorem for surface area and the fact...Ch. 6.6 - Prob. 46ECh. 6.6 - The area of the region R enclosed by the...Ch. 6.6 - As found in Example 8, the centroid of the region...Ch. 6.6 - Prob. 49ECh. 6.6 - Prob. 50ECh. 6.6 - Prob. 51ECh. 6.6 - Prob. 52ECh. 6 - Prob. 1GYRCh. 6 - How are the disk and washer methods for...Ch. 6 - Prob. 3GYRCh. 6 - How do you find the length of the graph of a...Ch. 6 - How do you define and calculate the area of the...Ch. 6 - Prob. 6GYRCh. 6 - What is a center of mass? What is a centroid?
Ch. 6 - Prob. 8GYRCh. 6 - Prob. 9GYRCh. 6 - How do you locate the center of mass of a thin...Ch. 6 - Prob. 1PECh. 6 - Prob. 2PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 4PECh. 6 - Prob. 5PECh. 6 - Prob. 6PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 8PECh. 6 - Prob. 9PECh. 6 - Prob. 10PECh. 6 - Prob. 11PECh. 6 - Prob. 12PECh. 6 - Prob. 13PECh. 6 - Prob. 14PECh. 6 - Prob. 15PECh. 6 - Prob. 16PECh. 6 - Prob. 17PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 19PECh. 6 - Prob. 20PECh. 6 - Lengths of Curves
Find the lengths of the curves...Ch. 6 - Prob. 22PECh. 6 - Prob. 23PECh. 6 - Prob. 24PECh. 6 - Prob. 25PECh. 6 - Prob. 26PECh. 6 - Prob. 27PECh. 6 - Prob. 28PECh. 6 - Prob. 29PECh. 6 - Prob. 30PECh. 6 - Prob. 31PECh. 6 - Pumping a reservoir (Continuation of Exercise 31.)...Ch. 6 - Prob. 33PECh. 6 - Pumping a cylindrical tank A storage tank is a...Ch. 6 - Prob. 35PECh. 6 - Prob. 36PECh. 6 - Prob. 37PECh. 6 - Prob. 38PECh. 6 - Prob. 39PECh. 6 - Prob. 40PECh. 6 - Prob. 41PECh. 6 - Prob. 42PECh. 6 - Prob. 43PECh. 6 - Prob. 44PECh. 6 - Prob. 45PECh. 6 - Prob. 46PECh. 6 - Prob. 1AAECh. 6 - Prob. 2AAECh. 6 - Prob. 3AAECh. 6 - Prob. 4AAECh. 6 - Prob. 5AAECh. 6 - Consider a right-circular cylinder of diameter 1....Ch. 6 - Prob. 7AAECh. 6 - Prob. 8AAECh. 6 - Prob. 9AAECh. 6 - Prob. 10AAECh. 6 - Prob. 11AAECh. 6 - Prob. 12AAECh. 6 - Prob. 13AAECh. 6 - Prob. 14AAECh. 6 - Prob. 15AAECh. 6 - Prob. 16AAECh. 6 - Prob. 17AAECh. 6 - Prob. 18AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- An object is suspended by two cables attached at a single point. The force applied on one cable has a magnitude of 125 pounds and acts at an angle of 37°. The force on the other cable is 75 pounds at an angle of 150°.Part A: Write each vector in component form. Show all necessary work.Part B: Find the dot product of the vectors. Show all necessary calculations Part C: Use the dot product to find the angle between the cables. Round the answer to the nearest degree. Show all necessary calculations.arrow_forwardAn airplane flies at 500 mph with a direction of 135° relative to the air. The plane experiences a wind that blows 60 mph with a direction of 60°.Part A: Write each of the vectors in linear form. Show all necessary calculations.Part B: Find the sum of the vectors. Show all necessary calculations. Part C: Find the true speed and direction of the airplane. Round the speed to the thousandths place and the direction to the nearest degree. Show all necessary calculations.arrow_forwardUse sigma notation to write the sum. Σ EM i=1 - n 2 4n + n narrow_forward
- Vectors t = 3i + 7j, u = 2i − 5j, and v = −21i + 9j are given.Part A: Find the angle between vectors t and u. Show all necessary calculations. Part B: Choose a value for c, such that c > 1. Find w = cv. Show all necessary work.Part C: Use the dot product to determine if t and w are parallel, orthogonal, or neither. Justify your answer.arrow_forwardA small company of science writers found that its rate of profit (in thousands of dollars) after t years of operation is given by P'(t) = (5t + 15) (t² + 6t+9) ³. (a) Find the total profit in the first three years. (b) Find the profit in the sixth year of operation. (c) What is happening to the annual profit over the long run? (a) The total profit in the first three years is $ (Round to the nearest dollar as needed.)arrow_forwardFind the area between the curves. x= -2, x = 7, y=2x² +3, y=0 Set up the integral (or integrals) needed to compute this area. Use the smallest possible number of integrals. Select the correct choice below and fill in the answer boxes to complete your choice. A. 7 [[2x² +3] dx -2 B. [[ ] dx+ -2 7 S [ ] dx The area between the curves is (Simplify your answer.)arrow_forward
- The rate at which a substance grows is given by R'(x) = 105e0.3x, where x is the time (in days). What is the total accumulated growth during the first 2.5 days? Set up the definite integral that determines the accumulated growth during the first 2.5 days. 2.5 Growth = (105e0.3x) dx 0 (Type exact answers in terms of e.) Evaluate the definite integral. Growth= (Do not round until the final answer. Then round to one decimal place as needed.)arrow_forwardFind the total area of the shaded regions. y 18- 16- 14- 12- 10- 8- 6- y=ex+1-e 4- 2- 0- 2 3 4 5 -2 -4- X ☑ The total area of the shaded regions is (Type an integer or decimal rounded to three decimal places as needed.)arrow_forwardThe graph of f(x), shown here, consists of two straight line segments and two quarter circles. Find the 19 value of f(x)dx. 小 Srxdx. 19 f(x)dx y 7 -7 2 12 19 X ☑arrow_forward
- Can you solve this two numerical method eqn and teach me.arrow_forwardFind the area between the following curves. x=-4, x=2, y=ex, and y = 3 - ex Set up the integral (or integrals) needed to compute this area. Use the small (Type exact answers in terms of e.) 3 In 2 A. S √ [3-2e*] dx+ -4 2 S [2ex-3] dx 3 In 2 B. dx Find the area between the curves. Area = (Type an exact answer in terms of e.)arrow_forwardUse the definite integral to find the area between the x-axis and f(x) over the indicated interval. Check first to see if the graph crosses the x-axis in the given interval. f(x)=8-2x²: [0,4] Set up the integral (or integrals) needed to compute this area. Use the smallest possible number of integrals. Select the correct choice below and fill in the answer boxes to ○ A. dx B. 2 S 8-2x² dx+ 4 S 2 8-2x2 dx C. dx + S dx For the interval [0,4], the area between the x-axis and f(x) is (Type an integer or a simplified fraction.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Introduction to Triple Integrals; Author: Mathispower4u;https://www.youtube.com/watch?v=CPR0ZD0IYVE;License: Standard YouTube License, CC-BY