Refrigerant-134a enters the evaporator coils placed at the back of the freezer section of a household refrigerator at 100 kPa with a quality of 20 percent and leaves at 100 kPa and −26°C. If the compressor consumes 600 W of power and the COP of the refrigerator is 1.2, determine (a) the mass flow rate of the refrigerant and (b) the rate of heat rejected to the kitchen air.
FIGURE P6–58
(a)
The mass flow rate of the refrigerant.
Answer to Problem 58P
The mass flow rate of the refrigerant is
Explanation of Solution
Write the expression for the energy balance equation.
Here, the total energy entering the system is
Simplify Equation (II) and write energy balance relation of refrigrent-134a.
Here, the rate of work to be done into the system is
Substitute
Here, the rate of heat transfer with low-temperature body is
Write the expression for the rate of coefficient performance of a refrigerant.
Conclusion:
Determine the initial specific enthalpy of refrigerant.
Here, the specific enthalpy of saturated liquid is
Refer to Table A-13, “Saturated refrigerant-134a-Pressure table”, obtain the value of specific enthalpy of saturated liquid and specific enthalpy change upon vaporization at 100 kPa pressure.
Substitute
Refer to Table A-13, “Saturated refrigerant-134a”, obtain the below properties at the final pressure and saturated temperature of 100 kPa and (-26 C) using interpolation method of two variables.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y are saturated temperature and specific enthalpy.
Show the temperature at 31.31 C and 40 C as in Table (1).
Temperature, C | Specific enthalpy, |
-26.65 C | 234.46 |
-26 C | ? |
-22.32 C | 236.99 |
Calculate final pressure and saturated temperature of 100 kPa and (-26 C) for liquid phase using interpolation method.
Substitute
From above calculation the final enthalpy of refrigerant is
Substitute
Substitute 0.72 kW for
Thus, the mass flow rate of the refrigerant is
(b)
The rate of heat rejected from refrigerant.
Answer to Problem 58P
The rate of heat rejected from refrigerant is
Explanation of Solution
Write the expression for the rate of conversation of energy principle for refrigerant 134a.
Conclusion:
Substitute
Thus, the rate of heat rejected from refrigerant is
Want to see more full solutions like this?
Chapter 6 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
- Refrigerant 134a enters a refrigerator compressor as superheated vapor at 0.20 MPa and -5 ° C at a rate of 0.7 kg / s, and exits at 1.2 MPa and 70 ° C. The refrigerant is cooled in the condenser to 44 ° C and 1.15 MPa, and is throttled to 0.2 MPa. Neglecting any heat transfer and any pressure drop in the connecting lines between the components, show the cycle on a Ts and Ph diagram with respect to the saturation lines, and determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor, b) the isentropic efficiency of the compressor, and c) the COP of the refrigeratorarrow_forwardAt a rate of 0.05 kg/s, refrigerant-134a enters the compressor of a refrigerator as superheated vapour at 0.14 MPa and -10 oC, and exits at 0.8 MPa and 50 oC. The refrigerant is cooled to 26°C and 0.72 MPa in the condenser before being throttled to 0.15 MPa. Determine: Taking into account any heat transfer and pressure drops in the connecting lines between the components, a. The isentropic efficiency of the compressor b.The coefficient of performance of the refrigeratorarrow_forward6–58 Refrigerant-134a enters the evaporator coils placed at the back of the freezer section of a household refrigerator at 100 kPa with a quality of 20 percent and leaves at 100 kPa and -26°C. If the compressor consumes 600 W of power and the COP of the refrigerator is 1.2, determine (a) the mass flow rate of the refrigerant and (b) the rate of heat rejected to the kitchen air. Answers: (a) 0.00414 kg/s, (b) 1320 W Condenser Expansion valve Compressor Evaporator 100 kPa 100 kPa x= 0.2 -26°Carrow_forward
- The drinking water needs of a production facility with 20 employees are to be met by a bubbler-type water fountain. The refrigerated water fountain is to cool water from 22°C to 8°C and supply cold water at a rate of 0.4 L per hour per person. Heat is transferred to the reservoir from the surroundings at 25°C at a rate of 45 W. If the COP of the refrigeration system is 2.925, determine the size of the compressor, in W, that will be suitable for the refrigeration system of this water cooler. The density and specific heat of water at room temperature are p= 1.0 kg/L and c = 4.18 kJ/kg.°C. (Round the final answer to three decimal places.) Water inlet 22°C 0.4 L/h-person 25°C 8°C Water reservoir Refrigeration Water fountain system The size of the compressor is W.arrow_forwardHeat is rejected from the condenser of a heat pump cycle by refrigerant-134a entering at 700 kPa and 50 ◦C at a rate of 105 kg/h and leaves as a saturated liquid. Determine (a) the temperature of R-134a at the condenser exit, (b) the volume flow rate at the exit of the condenser in L/min, (c) the COP of the heat pump if the rate of heat absorbed in the evaporator is 12,000 Btu/h.arrow_forwardA heat pump with refrigerant-134a as the working fluid is used to keep a space at 25 C by absorbing heat from geothermal water that enters the evaporator at 60 C at a rate of 0.065 kg/s and leaves at 40 C. Refrigerant enters the evaporator at 12 C with a quality of 15 percent and leaves at the same pressure as saturated vapor. If the compressor consumes 1.6 kW of power, determine; (a) the mass flow rate of the refrigerant, (b) the rate of heat supply, (c) the COP, and (d) the minimum power input to the compressor for the same rate of heat supply.arrow_forward
- Refrigerant-134a enters the evaporator coils placed at the back of the freezer section of a household refrigerator at 100 kPa with a quality of 20 percent and leaves at 100 kPa and −26°C. If the compressor consumes 600 W of power and the COP of the refrigerator is 1.2, determine the rate of heat rejected to the kitchen air.arrow_forwardThe two-stage compression refrigeration system shown below is used to remove heat from refrigerated space using R-410a as the coolant. The R-410a leaves the evaporator at state 1 and is first compressed in a low-pressure compressor (W, Pc=-250 kW) to an intermediate pressure of 933.9 kPa before it is mixed with saturated vapor and then further compressed in a high-pressure compressor to 3000 kPa. Heat is then removed from the R-410a as it passes through the heat exchanger and exchanges heat with cooling water. The R-410a is then expanded in the throttling valve to the intermediate pressure and passed through a type of mixing chamber called a flash chamber where it is separated into a saturated vapor leaving at state 7 and a saturated liquid leaving at state 8. Finally, the liquid is expanded before entering the evaporator at state 9. Note that the mass flow rate of R-410a leaving the mixing chamber is mypC = 10 kg/s. Neglect changes in kinetic and potential energy across all devices…arrow_forward1) refrigerated space at -35°C by rejecting waste heat to cooling water that enters the condenser at T, C at a rate of 0.25 kg/s and leaves at 26°C. The refrigerant enters the condenser a leaves at the same pressure subcooled by T, C. If the compressor consumes 3.3 kW of power, determine (a) the mass flow rate of the refrigerant, (b) the refrigeration load, Q. (c) the COP. Is this cycle reversible or irreversible? Explain. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the 1.2 MPa and 50°C and Notes: If the last digit of your student number is less than 5,1 T, is equal to the last digit of your student number. T. 16°C. It is 20°C otherwise. in any ofogse questions, yoearrow_forward
- Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.22 MPa and 27 C at a rate of 0.07 kg/s, and it leaves at 1.2 MPa and 73°C. The refrigerant is cooled in the condenser to 44°C and 1.16 MPa, and t is throttied to 0.21 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor, (b) the isentropic efficiency of the compressor, and (c) the COP of the refrigerator.arrow_forwardSteam with quality 0.85 enters the condenser of a power plant at 20 kPa with a mass flow rate 10 kg/s. It is cooled by water from a nearby river by circulating through the tubes inside the condenser. If the steam leaves the condenser as saturated liquid at 20 kPa and the temperature rise of the cooling water is 15°C, (a) determine the minimum mass flow rate of the cooling water required, (b) determine the heat transfer rate from the steam to the cooling water. Hint: Average specific heats at room temperature can be used for the cooling water from river. E Waterarrow_forwardA heat pump uses R134a as refrigerant. The refrigerant flows into the condenser at 900 kPa and 60°C and flows out of it (the condenser)as saturated liquid at the same pressure. The pressure in the evaporator is 70 kPa. The mass flow of the refrigerant is 0.025 kg/s and the compressor power is 1.4 kWa) Calculate the heat pump's power factor, COPHP.b) Calculate how much heat is absorbed/taken up from the air outside.c) Calculate the vapor quality of the refrigerant into the evaporator.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY