THERMODYNAMICS-SI ED. EBOOK >I<
THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
bartleby

Videos

Textbook Question
Book Icon
Chapter 6.11, Problem 57P

Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 35°C at a rate of 0.018 kg/s and leaves at 800 kPa as a saturated liquid. If the compressor consumes 1.2 kW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from the outside air.

FIGURE P6–57

Chapter 6.11, Problem 57P, Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 35C at a rate of

(a)

Expert Solution
Check Mark
To determine

The COP of the heat pump.

Answer to Problem 57P

The COP of the heat pump is 2.64_.

Explanation of Solution

Write the expression for the energy balance equation.

EinEout=ΔEsystem (I)

Here, the total energy entering the system is Ein, the total energy leaving the system is Eout, and the change in the total energy of the system is ΔEsystem.

Simplify Equation (II) and write energy balance relation of refrigrent-134a.

W˙in+m˙h1=Q˙H+m˙h2 (II)

Here, the rate of work to be done into the system is W˙in, the mass flow rate of heat pump is m˙, the heat rejected in the condenser is Q˙H, the initial specific enthalpy of the condenser is h1 and the final specific enthalpy of the condenser is h2.

Substitute 0 for W˙in in Equation (II), write the expression for the energy balance on the condenser confer heat rejected in the condenser.

Q˙H=m˙(h1h2) (III)

Write the expression for the rate of coefficient performance of a heat pump.

COPHP=Q˙HW˙net,in (IV)

Here the rate of required input of the heat pump is W˙net,in.

Conclusion:

Convert the unit of pressure from kPa to MPa.

P=800kPa=800kPa×103MPakPa=0.80MPa

Refer to Table A-13, “Superheated refrigerant-134a”, obtain the below properties at the superheated pressure and temperature of 800 kPa (0.80 MPa) and 35 C using interpolation method of two variables.

Write the formula of interpolation method of two variables.

y2=(x2x1)(y3y1)(x3x1)+y1 (V)

Here, the variables denote by x and y are superheated temperature and specific enthalpy.

Show the temperature at 31.31 C and 40 C as in Table (1).

Temperature,  CSpecific enthaply, kJ/kg
Saturated liquid, vf
31.31 C267.34
35 C?
40 C276.46

Calculate superheated pressure and temperature of 800 kPa (0.80 MPa) and 35 C for liquid phase using interpolation method.

Substitute 31.31 C for x1, 35 C for x2, 40 C for x3, 267.34kJ/kg for y1, and 276.46kJ/kg for y3 in Equation (V).

y2=(35°C31.31°C)(276.46kJ/kg267.34kJ/kg)(40°C31.31°C)+267.34kJ/kg=271.21kJ/kg

From above calculation the initial enthalpy of condenser is 271.21kJ/kg.

Refer to Table A-12, “Saturated pressure table” obtain properties at the superheated pressure and quality of final state of 800 kPa and 0.

hf=95.48kJ/kg

hg=267.34kJ/kg

Write the expression of final specific enthalpy of a two-phase system for condenser.

h2=hf+xhfg=hf+x(hghf) (VI)

Here, the specific enthalpy of condenser is vf, the specific enthalpy of condenser is, and the quality of final state for condenser is x.

Substitute 95.48kJ/kg for hf, 267.34kJ/kg for hg, and 0 for x in Equation (VI).

h2=(95.48kJ/kg)+(0)×(267.34kJ/kg95.48kJ/kg)=95.48kJ/kg

Substitute 0.018kg/s for m˙, 271.21kJ/kg for h2, and 95.48kJ/kg for h2 in Equation (III).

Q˙H=(0.018kg/s)(271.21kJ/kg95.48kJ/kg)=(0.018kg/s)(175.73kJ/kg)=3.163kJ/s×(kW1kJ/s)=3.163kW

Substitute 3.163kW for Q˙H and 1.2kW for W˙in in Equation (IV).

COP=3.163kW1.2kW=2.63592.64

Thus, the COP of the heat pump is 2.64_.

(b)

Expert Solution
Check Mark
To determine

The rate of heat absorbed from the outside air.

Answer to Problem 57P

The rate of heat absorbed from the outside air is 1.96kW_.

Explanation of Solution

Write the expression for the rate of conversation of energy principle for refrigerant 134a.

W˙in=Q˙HQ˙LQ˙L=Q˙HW˙in (V)

Here, the rate of heat rejected in the condenser is Q˙H, the rate of consume power by compressor is W˙in, and the rate of heat absorbed from the outside air is Q˙L.

Conclusion:

Substitute 3.163kW for Q˙H and 1.2kW for W˙in in Equation (V).

Q˙L=(3.1631.2)kW=1.96kW

Thus, the rate of heat absorbed from the outside air is 1.96kW_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Refrigerant-134a enters the condenser of a residential heat pump at 200 kPa and 35°C at a rate of 0.161 kg/s and leaves at 200 kPa as saturated liquid. If the compressor consumes 2.5 kW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from outside air COP = 10 657 & QL = 10 998 kW COP = 6 346 & QL = 15 758 kW COP = 12 658 & QL = 12 667 kW COP= 15 773 & QL = 36.931 kW
At a rate of 0.05 kg/s, refrigerant-134a enters the compressor of a refrigerator as superheated vapour at 0.14 MPa and -10 oC, and exits at 0.8 MPa and 50 oC. The refrigerant is cooled to 26°C and 0.72 MPa in the condenser before being throttled to 0.15 MPa. Determine: Taking into account any heat transfer and pressure drops in the connecting lines between the components, a. The isentropic efficiency of the compressor b.The coefficient of performance of the refrigerator
Refrigerant-134a enters the compressor of a refrigerator at 140 kPa and -10°C at a rate of 0.3 m3/min and leaves at 1 MPa. The isentropic efficiency of the compressor is 78 percent. The refrigerant enters the throttling valve at 0.95 MPa and 30°C and leaves the evaporator as saturated vapour at -18.5°C. determine the coefficient of performance.

Chapter 6 Solutions

THERMODYNAMICS-SI ED. EBOOK >I<

Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Baseboard heaters are basically electric...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - A heat engine has a total heat input of 1.3 kJ and...Ch. 6.11 - A steam power plant receives heat from a furnace...Ch. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A heat engine that propels a ship produces 500...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Solar energy stored in large bodies of water,...Ch. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - Prob. 27PCh. 6.11 - Prob. 29PCh. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 31PCh. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - The coefficient of performance of a residential...Ch. 6.11 - A food freezer is to produce a 5-kW cooling...Ch. 6.11 - An automotive air conditioner produces a 1-kW...Ch. 6.11 - A food refrigerator is to provide a 15,000-kJ/h...Ch. 6.11 - Prob. 44PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 46PCh. 6.11 - A heat pump with a COP of 1.4 is to produce a...Ch. 6.11 - An air conditioner removes heat steadily from a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Water enters an ice machine at 55F and leaves as...Ch. 6.11 - A refrigerator is used to cool water from 23 to 5C...Ch. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - A house that was heated by electric resistance...Ch. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - Refrigerant-134a enters the evaporator coils...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 60PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 71PCh. 6.11 - Prob. 72PCh. 6.11 - Prob. 73PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - You are an engineer in an electric-generation...Ch. 6.11 - Prob. 78PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A completely reversible heat engine operates with...Ch. 6.11 - An inventor claims to have developed a heat engine...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - An experimentalist claims that, based on his...Ch. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - Prob. 89PCh. 6.11 - Prob. 90PCh. 6.11 - Prob. 91PCh. 6.11 - Prob. 92PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - Determine the minimum work per unit of heat...Ch. 6.11 - Prob. 99PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A heat pump operates on a Carnot heat pump cycle...Ch. 6.11 - An air-conditioning system is used to maintain a...Ch. 6.11 - A Carnot refrigerator absorbs heat from a space at...Ch. 6.11 - Prob. 104PCh. 6.11 - A Carnot refrigerator operates in a room in which...Ch. 6.11 - Prob. 106PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 108PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A completely reversible heat pump has a COP of 1.6...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 113PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Calculate and plot the COP of a completely...Ch. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - Prob. 118PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 120PCh. 6.11 - Prob. 121PCh. 6.11 - Prob. 122PCh. 6.11 - It is commonly recommended that hot foods be...Ch. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 125RPCh. 6.11 - Prob. 126RPCh. 6.11 - Prob. 127RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 132RPCh. 6.11 - Consider a Carnot heat-engine cycle executed in a...Ch. 6.11 - Prob. 134RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Prob. 137RPCh. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 141RPCh. 6.11 - Prob. 142RPCh. 6.11 - Prob. 143RPCh. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 145RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - Prob. 149RPCh. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 153RPCh. 6.11 - Prob. 155RPCh. 6.11 - Prob. 156RPCh. 6.11 - Prob. 157RPCh. 6.11 - Prove that a refrigerators COP cannot exceed that...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - A window air conditioner that consumes 1 kW of...Ch. 6.11 - The drinking water needs of an office are met by...Ch. 6.11 - The label on a washing machine indicates that the...Ch. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat pump cycle is executed with R134a under the...Ch. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A refrigerator is removing heat from a cold medium...Ch. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - A typical new household refrigerator consumes...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY