Student Solutions Manual Single Variable For University Calculus: Early Transcendentals
4th Edition
ISBN: 9780135166130
Author: Joel R. Hass, Maurice D. Weir, George B. Thomas Jr., Przemyslaw Bogacki
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.1, Problem 43E
Find the volumes of the solids generated by revolving the regions bounded by the lines and curves in Exercises 41-46 about the x-axis.
43. y = x2+ 1, y = x + 3
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule06:42
Students have asked these similar questions
Calculate a (bxc) where a = i, b = j, and c = k.
i+2j+3k = (1,2,3) and b = -i-k.
Calculate the cross product a x b where a
Next calculate the area of the parallelogram spanned by a and b.
The measured receptance data around two resonant picks of a structure are tabulated in
the followings. Find the natural frequencies, damping ratios, and mode shapes of the
structure. (30 points)
(@)×10 m/N
α₁₂ (@)×10 m/N
w/2z
(Hz)
99
0.1176 0.17531
0.1114 -0.1751i
101
-0.0302 0.2456i
-0.0365 -0.2453i
103
-0.1216 0.1327i
-0.1279-0.1324i
220
0.0353 0.0260i
-0.0419+0.0259i
224
0.0210 0.0757i |-0.0273 +0.0756i
228 -0.0443 0.0474i 0.0382 +0.0474i
Chapter 6 Solutions
Student Solutions Manual Single Variable For University Calculus: Early Transcendentals
Ch. 6.1 - Find the volumes of the solids in Exercises 110....Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...
Ch. 6.1 - Find the volume of the given right tetrahedron....Ch. 6.1 - Prob. 12ECh. 6.1 - A twisted solid A square of side length s lies in...Ch. 6.1 - Cavalieri’s principle A solid lies between planes...Ch. 6.1 - Intersection of two half-cylinders Two...Ch. 6.1 - Gasoline in a tank A gasoline tank is in the shape...Ch. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - In Exercises 17-20, find the volume of the solid...Ch. 6.1 - Prob. 20ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 22ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 24ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 40ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 45ECh. 6.1 - Prob. 46ECh. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - Prob. 48ECh. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Prob. 56ECh. 6.1 - Prob. 57ECh. 6.1 - Prob. 58ECh. 6.1 - Volume of a bowl
A hemispherical bowl of radius a...Ch. 6.1 - Prob. 60ECh. 6.1 - Prob. 61ECh. 6.1 - Prob. 62ECh. 6.1 - Prob. 63ECh. 6.1 - Prob. 64ECh. 6.1 - Prob. 65ECh. 6.1 - Prob. 66ECh. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 16, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 27 and 28, use the shell method to...Ch. 6.2 - In Exercises 27 and 28, use the shell method to...Ch. 6.2 - For some regions, both the washer and shell...Ch. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - A Bundt cake, well known for having a ringed...Ch. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Find the volume of the solid generated by...Ch. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 116....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Length of a line segment Use the arc length...Ch. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.4 - In Exercises 1-8: Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 18ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - The surface of an astroid Find the area of the...Ch. 6.5 - The graphs of force functions (in newtons) are...Ch. 6.5 - Prob. 2ECh. 6.5 - Spring constant It took 1800 J of work to stretch...Ch. 6.5 - Stretching a spring A spring has a natural length...Ch. 6.5 - Stretching a rubber band A force of 2 N will...Ch. 6.5 - Stretching a spring If a force of 90 N stretches a...Ch. 6.5 - Subway car springs It takes a force of 21,714 lb...Ch. 6.5 - Bathroom scale A bathroom scale is compressed 1/16...Ch. 6.5 - Lifting a rope A mountain climber is about to haul...Ch. 6.5 - Leaky sandbag A bag of sand originally weighing...Ch. 6.5 - Lifting an elevator cable An electric elevator...Ch. 6.5 - Force of attraction When a particle of mass m is...Ch. 6.5 - Leaky bucket Assume the bucket in Example 4 is...Ch. 6.5 - (Continuation of Exercise 13.) The workers in...Ch. 6.5 - Pumping water The rectangular tank shown here,...Ch. 6.5 - Emptying a cistern The rectangular cistern...Ch. 6.5 - Pumping oil How much work would it take to pump...Ch. 6.5 - Pumping a half-full tank Suppose that, instead of...Ch. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Kinetic energy If a variable force of magnitude...Ch. 6.5 - Prob. 26ECh. 6.5 - Prob. 27ECh. 6.5 - In Exercises 26–30, use the result of Exercise...Ch. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - Prob. 2ECh. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - Prob. 4ECh. 6.6 - Prob. 5ECh. 6.6 - Prob. 6ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 8ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.6 - Prob. 12ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 15ECh. 6.6 - Prob. 16ECh. 6.6 - Prob. 17ECh. 6.6 - Prob. 18ECh. 6.6 - Prob. 19ECh. 6.6 - Prob. 20ECh. 6.6 - Prob. 21ECh. 6.6 - Prob. 22ECh. 6.6 - Prob. 23ECh. 6.6 - Find the center of mass of a thin plate covering...Ch. 6.6 - Prob. 25ECh. 6.6 - Prob. 26ECh. 6.6 - Prob. 27ECh. 6.6 - Prob. 28ECh. 6.6 - Use the result in Exercise 27 to find the...Ch. 6.6 - Prob. 30ECh. 6.6 - Prob. 31ECh. 6.6 - Prob. 32ECh. 6.6 - Prob. 33ECh. 6.6 - Prob. 34ECh. 6.6 - Prob. 35ECh. 6.6 - Prob. 36ECh. 6.6 - Prob. 37ECh. 6.6 - Prob. 38ECh. 6.6 - Prob. 39ECh. 6.6 - Prob. 40ECh. 6 - Prob. 1GYRCh. 6 - How are the disk and washer methods for...Ch. 6 - Prob. 3GYRCh. 6 - Prob. 4GYRCh. 6 - Prob. 5GYRCh. 6 - Prob. 6GYRCh. 6 - Prob. 7GYRCh. 6 - Prob. 8GYRCh. 6 - Prob. 9GYRCh. 6 - Prob. 1PECh. 6 - Prob. 2PECh. 6 - Prob. 3PECh. 6 - Prob. 4PECh. 6 - Prob. 5PECh. 6 - Prob. 6PECh. 6 - Prob. 7PECh. 6 - Prob. 8PECh. 6 - Prob. 9PECh. 6 - Prob. 10PECh. 6 - Prob. 11PECh. 6 - Prob. 12PECh. 6 - Prob. 13PECh. 6 - Prob. 14PECh. 6 - Prob. 15PECh. 6 - Prob. 16PECh. 6 - Prob. 17PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 19PECh. 6 - Prob. 20PECh. 6 - Prob. 21PECh. 6 - Prob. 22PECh. 6 - Prob. 23PECh. 6 - Prob. 24PECh. 6 - Prob. 25PECh. 6 - Prob. 26PECh. 6 - Prob. 27PECh. 6 - Prob. 28PECh. 6 - Prob. 29PECh. 6 - Leaky tank truck You drove an 800-gal tank truck...Ch. 6 - Prob. 31PECh. 6 - Prob. 32PECh. 6 - Prob. 33PECh. 6 - Prob. 34PECh. 6 - Prob. 35PECh. 6 - Prob. 36PECh. 6 - Prob. 37PECh. 6 - Prob. 38PECh. 6 - Prob. 39PECh. 6 - Prob. 40PECh. 6 - Prob. 41PECh. 6 - Prob. 42PECh. 6 - Prob. 43PECh. 6 - Prob. 44PECh. 6 - Prob. 1AAECh. 6 - Prob. 2AAECh. 6 - Prob. 3AAECh. 6 - Prob. 4AAECh. 6 - Prob. 5AAECh. 6 - Prob. 6AAECh. 6 - Prob. 7AAECh. 6 - Prob. 8AAECh. 6 - Prob. 9AAECh. 6 - Prob. 10AAECh. 6 - Prob. 11AAECh. 6 - Prob. 12AAECh. 6 - Prob. 13AAECh. 6 - Prob. 14AAECh. 6 - Prob. 15AAECh. 6 - Prob. 16AAE
Additional Math Textbook Solutions
Find more solutions based on key concepts
Explain the meaning of the term “statistically significant difference” in statistics terminology.
Intro Stats, Books a la Carte Edition (5th Edition)
the angle which was acute 100000 years ago and will be obtuse 100000 years from now.
Pre-Algebra Student Edition
True or False? In Exercises 5–8, determine whether the statement is true or false. If it is false, rewrite it a...
Elementary Statistics: Picturing the World (7th Edition)
Rational functions Determine limxf(x) and limxf(x) for the following rational functions. Then give the horizont...
Calculus: Early Transcendentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- == 1. A separable differential equation can be written in the form hy) = g(a) where h(y) is a function of y only, and g(x) is a function of r only. All of the equations below are separable. Rewrite each of these in the form h(y) = g(x), then find a general solution by integrating both sides. Determine whether the solutions you found are explicit (functions) or implicit (curves but not functions) (a) 1' = — 1/3 (b) y' = = --- Y (c) y = x(1+ y²)arrow_forwardA circle of radius r centered at the point (0,r) in the plane will intersect the y-axis at the origin and the point A=(0,2r), as pictured below. A line passes through the point A and the point C=(11/2,0) on the x-axis. In this problem, we will investigate the coordinates of the intersection point B between the circle and the line, as 1 → ∞ A=(0,2r) B (0,0) (a) The line through A and C has equation: y= 2 117 x+27 (b) The x-coordinate of the point B is 4472 121,2 +4 40 (c) The y-coordinate of the point B is +27 121 44 (d) The limit as r→ ∞ of the x-coordinate of B is 121 (if your answer is oo, write infinity).arrow_forward1. Show that the vector field F(x, y, z) = (2x sin ye³)ix² cos yj + (3xe³ +5)k satisfies the necessary conditions for a conservative vector field, and find a potential function for F.arrow_forward
- 7. Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where = X2 F1(x1, x2) X1 F2(x1, x2) x+x (i) Using the definition, calculate the integral LF.dy, where (t) = (cos(t), sin(t)) and t = [0,2]. [5 Marks] (ii) Explain why Green's Theorem cannot be used to find the integral in part (i). [5 Marks]arrow_forward6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forwardTotal marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forward
- Total marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forwardTotal marks 15 པ་ (i) Sketch the trace of the following curve on R2, (t) = (t2 cos(t), t² sin(t)), t = [0,2π]. [3 Marks] (ii) Find the length of this curve. (iii) [7 Marks] Give a parametric representation of a curve : [0, that has initial point (1,0), final point (0, 1) and the length √2. → R² [5 Marks] Turn over. MA-201: Page 4 of 5arrow_forwardTotal marks 15 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly your answer. [5 Marks] 6. (i) Sketch the trace of the following curve on R2, y(t) = (sin(t), 3 sin(t)), t = [0,π]. [3 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Introduction to Triple Integrals; Author: Mathispower4u;https://www.youtube.com/watch?v=CPR0ZD0IYVE;License: Standard YouTube License, CC-BY