For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region. 40. [T] y = 3 x 2 + 8 x + 9 and 3 y = x + 24
For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region. 40. [T] y = 3 x 2 + 8 x + 9 and 3 y = x + 24
For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region.
4.1 Basic Rules of Differentiation.
1. Find the derivative of each function. Write answers with positive exponents. Label your derivatives with
appropriate derivative notation.
a) y=8x-5x3 4
X
b)
y=-50 √x+11x
-5
c) p(x)=-10x²+6x3³
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY