Problems 21-30 refer to the table below of the six basic solutions to the e-system 2 x 1 + 3 x 2 + s 1 = 24 4 x 1 + 3 x 2 + s 2 = 36 x 1 x 2 s 1 s 2 A 0 0 24 36 B 0 8 0 12 C 0 12 − 12 0 D 12 0 0 − 12 E 9 0 6 0 F 6 4 0 0 Use the basic feasible solutions to maximize P = 8 x 1 + 5 x 2 .
Problems 21-30 refer to the table below of the six basic solutions to the e-system 2 x 1 + 3 x 2 + s 1 = 24 4 x 1 + 3 x 2 + s 2 = 36 x 1 x 2 s 1 s 2 A 0 0 24 36 B 0 8 0 12 C 0 12 − 12 0 D 12 0 0 − 12 E 9 0 6 0 F 6 4 0 0 Use the basic feasible solutions to maximize P = 8 x 1 + 5 x 2 .
Solution Summary: The author calculates the maximized value of P=8x_1+52 from the basic feasible solutions of the e-system.
1 2
21. For the matrix A
=
3 4
find AT (the transpose of A).
22. Determine whether the vector
@
1
3
2
is perpendicular to
-6
3
2
23. If v1
=
(2)
3
and v2 =
compute V1 V2 (dot product).
.
7. Find the eigenvalues of the matrix
(69)
8. Determine whether the vector
(£)
23
is in the span of the vectors
-0-0
and
2
2
1. Solve for x:
2. Simplify:
2x+5=15.
(x+3)² − (x − 2)².
-
b
3. If a = 3 and 6 = 4, find (a + b)² − (a² + b²).
4. Solve for x in 3x² - 12 = 0.
-
Chapter 6 Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY