
Concept explainers
A rectangular strip of steel 2 ft 4 in. long, 1 ft 6 in. wide, and

The weight of the rectangular strip of steel.
Answer to Problem 1A
Weight of the rectangular strip
Explanation of Solution
Given:
Length
Breadth
Thickness
Diameter of hole
Specific volume of the steel strip
Concept used:
The weight of the steel strip is
Here, W is the weight, v is the specific volume and V is the total volume.
Calculation:
The total volume of the steel strip is calculated by the formula
Here, V is the total volume of the steel strip, Vr is the volume of rectangular strip and Vc is the volume of circular holes.
Now, the volume of the rectangular strip Vris calculated as
Here, l is the length, b is the breadth and t is the thickness of rectangle.
By substituting the values we get
Again, the volume of the circular holes Vc is calculated as
Here, r is the radius and t is the thickness of rectangle.
By substituting the values we get
Now, substituting the value of volume of rectangular strip and volume of circular holes in equation (1) we get
The weight of the steel strip is
Here, W is the weight, v is the specific volume and V is the total volume.
By substituting the values we get
Conclusion:
The weight of the steel strip is
Want to see more full solutions like this?
Chapter 61 Solutions
Mathematics for Machine Technology
Additional Math Textbook Solutions
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Calculus: Early Transcendentals (2nd Edition)
Elementary Algebra For College Students (10th Edition)
Precalculus: A Unit Circle Approach (3rd Edition)
A First Course in Probability (10th Edition)
Elementary Statistics (13th Edition)
- Use Laplace transform and convolution theorem to solve the initial value problem y' + y = tsint, y(0) = 0arrow_forwardKindly inform what is bottling?arrow_forwardם Hwk 25 Hwk 25 - (MA 244-03) (SP25) || X Answered: [) Hwk 25 Hwk 28 - (X + https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606604 3. [1.14/4 Points] DETAILS MY NOTES LARLINALG8 6.4.013. Let B = {(1, 3), (-2, -2)} and B' = {(−12, 0), (-4, 4)} be bases for R², and let 42 - [13] A = 30 be the matrix for T: R² R² relative to B. (a) Find the transition matrix P from B' to B. 6 4 P = 9 4 (b) Use the matrices P and A to find [v] B and [T(V)] B, where [v]B[31]. 26 [V] B = -> 65 234 [T(V)]B= -> 274 (c) Find P-1 and A' (the matrix for T relative to B'). -1/3 1/3 - p-1 = -> 3/4 -1/2 ↓ ↑ -1 -1.3 A' = 12 8 ↓ ↑ (d) Find [T(v)] B' two ways. 4.33 [T(v)]BP-1[T(v)]B = 52 4.33 [T(v)]B' A'[V]B' = 52 目 67% PREVIOUS ANSWERS ill ASK YOUR TEACHER PRACTICE ANOTHERarrow_forward
- [) Hwk 25 Hwk 28 - (MA 244-03) (SP25) || X Success Confirmation of Questic X + https://www.webassign.net/web/Student/Assignment-Responses/submit?dep=36606607&tags=autosave#question 384855 DETAILS MY NOTES LARLINALG8 7.2.001. 1. [-/2.85 Points] Consider the following. -14 60 A = [ -4-5 P = -3 13 -1 -1 (a) Verify that A is diagonalizable by computing P-1AP. P-1AP = 具首 (b) Use the result of part (a) and the theorem below to find the eigenvalues of A. Similar Matrices Have the Same Eigenvalues If A and B are similar n x n matrices, then they have the same eigenvalues. (11, 12) = Need Help? Read It SUBMIT ANSWER 2. [-/2.85 Points] DETAILS MY NOTES LARLINALG8 7.2.007. For the matrix A, find (if possible) a nonsingular matrix P such that P-1AP is diagonal. (If not possible, enter IMPOSSIBLE.) P = A = 12 -3 -4 1 Verify that P-1AP is a diagonal matrix with the eigenvalues on the main diagonal. P-1AP = Need Help? Read It Watch It SUBMIT ANSWED 80% ill จ ASK YOUR TEACHER PRACTICE ANOTHER ASK YOUR…arrow_forward[) Hwk 25 → C Hwk 27 - (MA 244-03) (SP25) IN X Answered: [) Hwk 25 4. [-/4 Poir X + https://www.webassign.net/web/Student/Assignment-Responses/submit?dep=36606606&tags=autosave#question3706544_6 3. [-/2.85 Points] DETAILS MY NOTES LARLINALG8 7.1.021. Find the characteristic equation and the eigenvalues (and a basis for each of the corresponding eigenspaces) of the matrix. 2 -2 5 0 3 -2 0-1 2 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (1, 2, 13) = ·( ) a basis for each of the corresponding eigenspaces X1 x2 = x3 = Need Help? Read It Watch It SUBMIT ANSWER 4. [-/2.85 Points] DETAILS MY NOTES LARLINALG8 7.1.041. Find the eigenvalues of the triangular or diagonal matrix. (Enter your answers as a comma-separated list.) λ= 1 0 1 045 002 Need Help? Read It ASK YOUR TEACHER PRACTICE ANOTHER ASK YOUR TEACHER PRACTICE ANOTHER illarrow_forward[) Hwk 25 4. [-/4 Points] Hwk 25 - (MA 244-03) (SP25) || X Answered: Homework#7 | bartle X + https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606604 DETAILS MY NOTES LARLINALG8 6.4.019. Use the matrix P to determine if the matrices A and A' are similar. -1 -1 12 9 '-[ ¯ ¯ ], ^ - [ _—2—2 _ ' ], ^' - [ ˜³ −10] P = 1 2 A = -20-11 A' -3-10 6 4 P-1 = Are they similar? Yes, they are similar. No, they are not similar. Need Help? Read It SUBMIT ANSWER P-1AP = 5. [-/4 Points] DETAILS MY NOTES LARLINALG8 6.4.023. Suppose A is the matrix for T: R³ - → R³ relative to the standard basis. Find the diagonal matrix A' for T relative to the basis B'. A' = -1 -2 0 A = -1 0 0 ' 0 02 B' = {(−1, 1, 0), (2, 1, 0), (0, 0, 1)} ☐☐☐ ↓ ↑ Need Help? Read It Update available →] - restart now ASK YOUR T Sync and save data { Sign In ill ↑ New tab HT New window N New private window +HP ASK YOUR T Bookmarks History Downloads > > HJ Passwords Add-ons and themes HA Print... HP Save page as... HS…arrow_forward
- Clarification: 1. f doesn’t have REAL roots2. f is a quadratic, so a≠0arrow_forward[J) Hwk 25 Hwk 25 - (MA 244-03) (SP25) || X Answered: Homework#7 | bartle X + https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606604 1. [-/4 Points] DETAILS MY NOTES Find the matrix A' for T relative to the basis B'. LARLINALG8 6.4.003. T: R² → R², T(x, y) = (x + y, 4y), B' = {(−4, 1), (1, −1)} A' = Need Help? Read It Watch It SUBMIT ANSWER 2. [-/4 Points] DETAILS MY NOTES LARLINALG8 6.4.007. Find the matrix A' for T relative to the basis B'. T: R³ → R³, T(x, y, z) = (x, y, z), B' = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} A' = ↓ ↑ Need Help? Read It SUBMIT ANSWER 具⇧ ASK YOUR TEACHER PRACTICE ANOTHER ill ASK YOUR TEACHER PRACTICE ANOTHER 3. [-/4 Points] DETAILS MY NOTES LARLINALG8 6.4.013. ASK YOUR TEACHER PRACTICE ANOTHERarrow_forwardUse Laplace transforms to solve the following heat problem: U₁ = Urr x > 0, t> 0 u(x, 0) = 10c a -X u(0,t) = 0 lim u(x,t) = 0 I7Xarrow_forward
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL




