Understandable Statistics: Concepts and Methods
Understandable Statistics: Concepts and Methods
12th Edition
ISBN: 9781337119917
Author: Charles Henry Brase, Corrinne Pellillo Brase
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6.1, Problem 17P

Uniform Distribution: Measurement Errors Measurement errors from instruments are often modeled using the uniform distribution (see Problem 16). To determine the range of a large public address system, acoustical engineers use a method of triangulation to measure the shock waves sent out by the speakers. The time at which the waves arrive at the sensors must be measured accurately. In this context, a negative error means the signal arrived too early. A positive error means the signal arrived too late. Measurement errors in reading these times have a uniform distribution from −0.05 to +0.05 microseconds. (Reference: J. Perruzzi and E. Hilliard, “Modeling Time Delay Measurement Errors,” Journal of the Acoustical Society of America, Vol. 75, No. 1, pp. 197–201.) What is the probability that such measurements will be in error by

  1. (a) less than +0.03 microsecond (i.e., −0.05 ≤ x < 0.03)?
  2. (b) more than −0.02 microsecond?
  3. (c) between −0.04 and +0.01 microsecond?
  4. (d) Find the mean and standard deviation of measurement errors. Measurements from an instrument are called unbiased if the mean of the measurement errors is zero. Would you say the measurements for these acoustical sensors are unbiased? Explain.

16. Expand Your Knowledge: Continuous Uniform Probability Distribution Let α and β be any two constants such that α < β. Suppose we choose a point x at random in the interval from α to β. In this context the phrase at random is taken to mean that the point x is as likely to be chosen from one particular part of the interval as any other part. Consider the rectangle.

Chapter 6.1, Problem 17P, Uniform Distribution: Measurement Errors Measurement errors from instruments are often modeled using , example  1

The base of the rectangle has length βα and the height of the rectangle is 1/(β − α), so the area of the rectangle is 1. As such, this rectangle’s top can be thought of as part of a probability density curve. Since we specify that x must lie between α and β, the probability of a point occurring outside the interval [α, β] is, by definition, 0. From a geometric point of view, x chosen at random from α to β means we are equally likely to land anywhere in the interval from α to β. For this reason, the top of the (rectangle’s) density curve is flat or uniform.

Now suppose that a and b are numbers such that α ≤ a < bβ. What is the probability that a number x chosen at random from α to β will fall in the interval [a, b]? Consider the graph

Chapter 6.1, Problem 17P, Uniform Distribution: Measurement Errors Measurement errors from instruments are often modeled using , example  2

Because x is chosen at random from [α, β], the area of the rectangle that lies above [a, b] is the probability that x lies in [a, b]. This area is

P ( a < x < b ) = b a β α

In this way we can assign a probability to any interval inside [α, β]. This probability distribution is called the continuous uniform distribution (also called the rectangular distribution). Using some extra mathematics, it can be shown that if x is a random variable with this distribution, then the mean and standard deviation of x are

μ = α + β 2 and σ = β α 12

Sedimentation experiments are very important in the study of biology, medicine, hydrodynamics, petroleum engineering, civil engineering, and so on. The size (diameter) of approximately spherical particles is important since larger particles hinder and sometimes block the movement of smaller particles. Usually the size of sediment particles follows a uniform distribution (Reference: Y. Zimmels, “Theory of Kindred Sedimentation of Polydisperse Mixtures,” AIChE Journal, Vol. 29, No. 4, pp. 669–676).

Suppose a veterinary science experiment injects very small, spherical pellets of low-level radiation directly into an animal’s bloodstream. The purpose is to attempt to cure a form of recurring cancer. The pellets eventually dissolve and pass through the animal’s system. Diameters of the pellets are uniformly distributed from 0.015 mm to 0.065 mm. If a pellet enters an artery, what is the probability that it will be the following sizes?

  1. (a) 0.050 mm or larger. Hint: All particles are between 0.015 mm and 0.065 mm, so larger than 0.050 means 0.050 ≤ x ≤ 0.065.
  2. (b) 0.040 mm or smaller
  3. (c) between 0.035 mm and 0.055 mm
  4. (d) Compute the mean size of the particles.
  5. (e) Compute the standard deviation of particle size.
Blurred answer
Students have asked these similar questions
please answer the given questions
An example of the statistical treatment of an urban spot speed study is given below. Table 10.2 shows a set of 130 observations of spot speeds made by timing vehicles through a "trap" of 88 feet. In this example, the stopwatch data are grouped into 0.2 sec classes (a 1/5 sec stopwatch was used to obtain the data). The first column of the table shows the midpoint of each group. The second column shows the frequency of the observations. The cumulative percent shown in the third column is obtained by dividing each cumulative frequency (for example, 8 vehicles took 5 sec or longer to pass through the trap) by the total number of observations and multiplying by 100 (8 x 100/130 = 6.2 percent). The next two columns are computed to develop the average and variance of the space distribution. The sixth column indicates the speed of each time class and the last two columns are used to obtain the average speed and variance of the time distribution. Spot Speed Study Calculations (1) (2) Number…
ES Chapter 09, Section 9.2, Problem 029a X Incorrect. Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of the rods are normally distributed and vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.035 inch. The quality control department at the company takes a sample of 20 such rods every week, calculates the mean length of these rods, and tests the null hypothesis, u = 36 inches, against the alternative hypothesis, u # 36 inches. If the null hypothesis is rejected, the machine is stopped and adjusted. A recent sample of 20 rods produced a mean length of 36.015 inches. Calculate the p-value for this test of hypothesis. Based on this p-value, will the quality control inspector decide to stop the machine…

Chapter 6 Solutions

Understandable Statistics: Concepts and Methods

Ch. 6.1 - Pain Management: Laser Therapy Effect of...Ch. 6.1 - Control Charts: Yellowstone National Park...Ch. 6.1 - Control Charts: Bank Loans Tri-County Bank is a...Ch. 6.1 - Control Charts: Motel Rooms The manager of Motel...Ch. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Uniform Distribution: Measurement Errors...Ch. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.2 - Statistical Literacy What does a standard score...Ch. 6.2 - Statistical Literacy Does a raw score less than...Ch. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Basic Computation: z Score and Raw Score A normal...Ch. 6.2 - Basic Computation: z Score and Raw Score A normal...Ch. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - z Scores: First Aid Course The college physical...Ch. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Normal Curve: Tree Rings Tree-ring dates were used...Ch. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 14PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 39PCh. 6.2 - Prob. 40PCh. 6.2 - Prob. 41PCh. 6.2 - Prob. 42PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 44PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 46PCh. 6.2 - Prob. 47PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 49PCh. 6.2 - Prob. 50PCh. 6.3 - Statistical Literacy Consider a normal...Ch. 6.3 - Statistical Literacy Suppose 5% of the area under...Ch. 6.3 - Prob. 3PCh. 6.3 - Critical Thinking: Normality Consider the...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Archaeology: Hopi Village Thickness measurements...Ch. 6.3 - Law Enforcement: Police Response Time Police...Ch. 6.3 - Prob. 29PCh. 6.3 - Guarantee: Watches Accrotime is a manufacturer of...Ch. 6.3 - Expand Your Knowledge: Estimating the Standard...Ch. 6.3 - Estimating the Standard Deviation: Refrigerator...Ch. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.3 - Insurance: Satellites A relay microchip in a...Ch. 6.3 - Convertion Center: Exhibition Show Attendance...Ch. 6.3 - Exhibition Shows: Inverse Normal Distribution Most...Ch. 6.3 - Budget: Maintenance The amount of money spent...Ch. 6.3 - Prob. 39PCh. 6.3 - Prob. 40PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.5 - Statistical Literacy What is the standard error of...Ch. 6.5 - Prob. 2PCh. 6.5 - Prob. 3PCh. 6.5 - Prob. 4PCh. 6.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 6.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 6.5 - Prob. 7PCh. 6.5 - Prob. 8PCh. 6.5 - Prob. 9PCh. 6.5 - Prob. 10PCh. 6.5 - Prob. 11PCh. 6.5 - Critical Thinking Suppose an x distribution has...Ch. 6.5 - Prob. 13PCh. 6.5 - Vital Statistics: Heights of Men The heights of...Ch. 6.5 - Prob. 15PCh. 6.5 - Medical: White Blood Cells Let x be a random...Ch. 6.5 - Wildlife: Deer Let x be a random variable that...Ch. 6.5 - Focus Problem: Impulse Buying Let x represent the...Ch. 6.5 - Finance: Templeton Funds Templeton World is a...Ch. 6.5 - Finance: European Growth Fund A European growth...Ch. 6.5 - Expand Your Knowledge: Totals Instead of Averages...Ch. 6.5 - Prob. 22PCh. 6.5 - Prob. 23PCh. 6.6 - Prob. 1PCh. 6.6 - Prob. 2PCh. 6.6 - Basic Computation: Normal Approximation to a...Ch. 6.6 - Basic Computation: Normal Approximation to a...Ch. 6.6 - Critical Thinking You need to compute the...Ch. 6.6 - Critical Thinking Consider a binomial experiment...Ch. 6.6 - In the following problems, check that it is...Ch. 6.6 - In the following problems, check that it is...Ch. 6.6 - Prob. 9PCh. 6.6 - Prob. 10PCh. 6.6 - Prob. 11PCh. 6.6 - Prob. 12PCh. 6.6 - Prob. 13PCh. 6.6 - In the following problems, check that it is...Ch. 6.6 - Prob. 15PCh. 6.6 - Prob. 17PCh. 6.6 - Prob. 18PCh. 6.6 - Prob. 19PCh. 6.6 - Basic Computation: p Distribution Suppose we have...Ch. 6.6 - Prob. 21PCh. 6 - Prob. 1CRPCh. 6 - Prob. 2CRPCh. 6 - Statistical Literacy Is a process in control if...Ch. 6 - Prob. 4CRPCh. 6 - Prob. 5CRPCh. 6 - Prob. 6CRPCh. 6 - Prob. 7CRPCh. 6 - Prob. 8CRPCh. 6 - Prob. 9CRPCh. 6 - Prob. 10CRPCh. 6 - Prob. 11CRPCh. 6 - Basic Computation: Probability Given that x is a...Ch. 6 - Prob. 13CRPCh. 6 - Prob. 14CRPCh. 6 - Prob. 15CRPCh. 6 - Prob. 16CRPCh. 6 - Prob. 17CRPCh. 6 - Prob. 18CRPCh. 6 - Prob. 19CRPCh. 6 - Prob. 20CRPCh. 6 - Prob. 21CRPCh. 6 - Prob. 22CRPCh. 6 - Prob. 23CRPCh. 6 - Prob. 24CRPCh. 6 - Prob. 25CRPCh. 6 - Prob. 26CRPCh. 6 - Break into small groups and discuss the following...Ch. 6 - Prob. 1LCCh. 6 - Prob. 2LCCh. 6 - Prob. 3LCCh. 6 - Prob. 4LCCh. 6 - Discuss each of the following topics in class or...Ch. 6 - Prob. 1UTCh. 6 - Prob. 1CURPCh. 6 - Prob. 2CURPCh. 6 - Prob. 3CURPCh. 6 - Prob. 4CURPCh. 6 - Prob. 5CURPCh. 6 - Prob. 6CURPCh. 6 - Prob. 7CURPCh. 6 - Prob. 8CURPCh. 6 - Prob. 9CURPCh. 6 - Prob. 10CURPCh. 6 - Prob. 11CURPCh. 6 - Prob. 12CURPCh. 6 - Prob. 13CURPCh. 6 - Prob. 14CURPCh. 6 - Prob. 15CURP
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License