UNDERSTANDABLE STAT. >PRINT UPGRADE<
UNDERSTANDABLE STAT. >PRINT UPGRADE<
12th Edition
ISBN: 9780357724880
Author: BRASE
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6.1, Problem 17P

Uniform Distribution: Measurement Errors Measurement errors from instruments are often modeled using the uniform distribution (see Problem 16). To determine the range of a large public address system, acoustical engineers use a method of triangulation to measure the shock waves sent out by the speakers. The time at which the waves arrive at the sensors must be measured accurately. In this context, a negative error means the signal arrived too early. A positive error means the signal arrived too late. Measurement errors in reading these times have a uniform distribution from −0.05 to +0.05 microseconds. (Reference: J. Perruzzi and E. Hilliard, “Modeling Time Delay Measurement Errors,” Journal of the Acoustical Society of America, Vol. 75, No. 1, pp. 197–201.) What is the probability that such measurements will be in error by

  1. (a) less than +0.03 microsecond (i.e., −0.05 ≤ x < 0.03)?
  2. (b) more than −0.02 microsecond?
  3. (c) between −0.04 and +0.01 microsecond?
  4. (d) Find the mean and standard deviation of measurement errors. Measurements from an instrument are called unbiased if the mean of the measurement errors is zero. Would you say the measurements for these acoustical sensors are unbiased? Explain.

16. Expand Your Knowledge: Continuous Uniform Probability Distribution Let α and β be any two constants such that α < β. Suppose we choose a point x at random in the interval from α to β. In this context the phrase at random is taken to mean that the point x is as likely to be chosen from one particular part of the interval as any other part. Consider the rectangle.

Chapter 6.1, Problem 17P, Uniform Distribution: Measurement Errors Measurement errors from instruments are often modeled using , example  1

The base of the rectangle has length βα and the height of the rectangle is 1/(β − α), so the area of the rectangle is 1. As such, this rectangle’s top can be thought of as part of a probability density curve. Since we specify that x must lie between α and β, the probability of a point occurring outside the interval [α, β] is, by definition, 0. From a geometric point of view, x chosen at random from α to β means we are equally likely to land anywhere in the interval from α to β. For this reason, the top of the (rectangle’s) density curve is flat or uniform.

Now suppose that a and b are numbers such that α ≤ a < bβ. What is the probability that a number x chosen at random from α to β will fall in the interval [a, b]? Consider the graph

Chapter 6.1, Problem 17P, Uniform Distribution: Measurement Errors Measurement errors from instruments are often modeled using , example  2

Because x is chosen at random from [α, β], the area of the rectangle that lies above [a, b] is the probability that x lies in [a, b]. This area is

P ( a < x < b ) = b a β α

In this way we can assign a probability to any interval inside [α, β]. This probability distribution is called the continuous uniform distribution (also called the rectangular distribution). Using some extra mathematics, it can be shown that if x is a random variable with this distribution, then the mean and standard deviation of x are

μ = α + β 2 and σ = β α 12

Sedimentation experiments are very important in the study of biology, medicine, hydrodynamics, petroleum engineering, civil engineering, and so on. The size (diameter) of approximately spherical particles is important since larger particles hinder and sometimes block the movement of smaller particles. Usually the size of sediment particles follows a uniform distribution (Reference: Y. Zimmels, “Theory of Kindred Sedimentation of Polydisperse Mixtures,” AIChE Journal, Vol. 29, No. 4, pp. 669–676).

Suppose a veterinary science experiment injects very small, spherical pellets of low-level radiation directly into an animal’s bloodstream. The purpose is to attempt to cure a form of recurring cancer. The pellets eventually dissolve and pass through the animal’s system. Diameters of the pellets are uniformly distributed from 0.015 mm to 0.065 mm. If a pellet enters an artery, what is the probability that it will be the following sizes?

  1. (a) 0.050 mm or larger. Hint: All particles are between 0.015 mm and 0.065 mm, so larger than 0.050 means 0.050 ≤ x ≤ 0.065.
  2. (b) 0.040 mm or smaller
  3. (c) between 0.035 mm and 0.055 mm
  4. (d) Compute the mean size of the particles.
  5. (e) Compute the standard deviation of particle size.
Blurred answer
Students have asked these similar questions
A researcher wishes to estimate, with 90% confidence, the population proportion of adults who support labeling legislation for genetically modified organisms (GMOs). Her estimate must be accurate within 4% of the true proportion. (a) No preliminary estimate is available. Find the minimum sample size needed. (b) Find the minimum sample size needed, using a prior study that found that 65% of the respondents said they support labeling legislation for GMOs. (c) Compare the results from parts (a) and (b). ... (a) What is the minimum sample size needed assuming that no prior information is available? n = (Round up to the nearest whole number as needed.)
The table available below shows the costs per mile (in cents) for a sample of automobiles. At a = 0.05, can you conclude that at least one mean cost per mile is different from the others? Click on the icon to view the data table. Let Hss, HMS, HLS, Hsuv and Hмy represent the mean costs per mile for small sedans, medium sedans, large sedans, SUV 4WDs, and minivans respectively. What are the hypotheses for this test? OA. Ho: Not all the means are equal. Ha Hss HMS HLS HSUV HMV B. Ho Hss HMS HLS HSUV = μMV Ha: Hss *HMS *HLS*HSUV * HMV C. Ho Hss HMS HLS HSUV =μMV = = H: Not all the means are equal. D. Ho Hss HMS HLS HSUV HMV Ha Hss HMS HLS =HSUV = HMV
Question: A company launches two different marketing campaigns to promote the same product in two different regions. After one month, the company collects the sales data (in units sold) from both regions to compare the effectiveness of the campaigns. The company wants to determine whether there is a significant difference in the mean sales between the two regions. Perform a two sample T-test You can provide your answer by inserting a text box and the answer must include: Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value. (2 points = 0.5 x 4 Answers) Each of these is worth 0.5 points.  However, showing the calculation is must. If calculation is missing, the whole answer won't get any credit.

Chapter 6 Solutions

UNDERSTANDABLE STAT. >PRINT UPGRADE<

Ch. 6.1 - Pain Management: Laser Therapy Effect of...Ch. 6.1 - Control Charts: Yellowstone National Park...Ch. 6.1 - Control Charts: Bank Loans Tri-County Bank is a...Ch. 6.1 - Control Charts: Motel Rooms The manager of Motel...Ch. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Uniform Distribution: Measurement Errors...Ch. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.2 - Statistical Literacy What does a standard score...Ch. 6.2 - Statistical Literacy Does a raw score less than...Ch. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Basic Computation: z Score and Raw Score A normal...Ch. 6.2 - Basic Computation: z Score and Raw Score A normal...Ch. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - z Scores: First Aid Course The college physical...Ch. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Normal Curve: Tree Rings Tree-ring dates were used...Ch. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 14PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Basic Computation: Finding Areas Under the...Ch. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 39PCh. 6.2 - Prob. 40PCh. 6.2 - Prob. 41PCh. 6.2 - Prob. 42PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 44PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 46PCh. 6.2 - Prob. 47PCh. 6.2 - Basic Computation: Finding Probabilities In...Ch. 6.2 - Prob. 49PCh. 6.2 - Prob. 50PCh. 6.3 - Statistical Literacy Consider a normal...Ch. 6.3 - Statistical Literacy Suppose 5% of the area under...Ch. 6.3 - Prob. 3PCh. 6.3 - Critical Thinking: Normality Consider the...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find Probabilities In Problems...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Basic Computation: Find z Values In Problems 1524,...Ch. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Archaeology: Hopi Village Thickness measurements...Ch. 6.3 - Law Enforcement: Police Response Time Police...Ch. 6.3 - Prob. 29PCh. 6.3 - Guarantee: Watches Accrotime is a manufacturer of...Ch. 6.3 - Expand Your Knowledge: Estimating the Standard...Ch. 6.3 - Estimating the Standard Deviation: Refrigerator...Ch. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.3 - Insurance: Satellites A relay microchip in a...Ch. 6.3 - Convertion Center: Exhibition Show Attendance...Ch. 6.3 - Exhibition Shows: Inverse Normal Distribution Most...Ch. 6.3 - Budget: Maintenance The amount of money spent...Ch. 6.3 - Prob. 39PCh. 6.3 - Prob. 40PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.5 - Statistical Literacy What is the standard error of...Ch. 6.5 - Prob. 2PCh. 6.5 - Prob. 3PCh. 6.5 - Prob. 4PCh. 6.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 6.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 6.5 - Prob. 7PCh. 6.5 - Prob. 8PCh. 6.5 - Prob. 9PCh. 6.5 - Prob. 10PCh. 6.5 - Prob. 11PCh. 6.5 - Critical Thinking Suppose an x distribution has...Ch. 6.5 - Prob. 13PCh. 6.5 - Vital Statistics: Heights of Men The heights of...Ch. 6.5 - Prob. 15PCh. 6.5 - Medical: White Blood Cells Let x be a random...Ch. 6.5 - Wildlife: Deer Let x be a random variable that...Ch. 6.5 - Focus Problem: Impulse Buying Let x represent the...Ch. 6.5 - Finance: Templeton Funds Templeton World is a...Ch. 6.5 - Finance: European Growth Fund A European growth...Ch. 6.5 - Expand Your Knowledge: Totals Instead of Averages...Ch. 6.5 - Prob. 22PCh. 6.5 - Prob. 23PCh. 6.6 - Prob. 1PCh. 6.6 - Prob. 2PCh. 6.6 - Basic Computation: Normal Approximation to a...Ch. 6.6 - Basic Computation: Normal Approximation to a...Ch. 6.6 - Critical Thinking You need to compute the...Ch. 6.6 - Critical Thinking Consider a binomial experiment...Ch. 6.6 - In the following problems, check that it is...Ch. 6.6 - In the following problems, check that it is...Ch. 6.6 - Prob. 9PCh. 6.6 - Prob. 10PCh. 6.6 - Prob. 11PCh. 6.6 - Prob. 12PCh. 6.6 - Prob. 13PCh. 6.6 - In the following problems, check that it is...Ch. 6.6 - Prob. 15PCh. 6.6 - Prob. 17PCh. 6.6 - Prob. 18PCh. 6.6 - Prob. 19PCh. 6.6 - Basic Computation: p Distribution Suppose we have...Ch. 6.6 - Prob. 21PCh. 6 - Prob. 1CRPCh. 6 - Prob. 2CRPCh. 6 - Statistical Literacy Is a process in control if...Ch. 6 - Prob. 4CRPCh. 6 - Prob. 5CRPCh. 6 - Prob. 6CRPCh. 6 - Prob. 7CRPCh. 6 - Prob. 8CRPCh. 6 - Prob. 9CRPCh. 6 - Prob. 10CRPCh. 6 - Prob. 11CRPCh. 6 - Basic Computation: Probability Given that x is a...Ch. 6 - Prob. 13CRPCh. 6 - Prob. 14CRPCh. 6 - Prob. 15CRPCh. 6 - Prob. 16CRPCh. 6 - Prob. 17CRPCh. 6 - Prob. 18CRPCh. 6 - Prob. 19CRPCh. 6 - Prob. 20CRPCh. 6 - Prob. 21CRPCh. 6 - Prob. 22CRPCh. 6 - Prob. 23CRPCh. 6 - Prob. 24CRPCh. 6 - Prob. 25CRPCh. 6 - Prob. 26CRPCh. 6 - Break into small groups and discuss the following...Ch. 6 - Prob. 1LCCh. 6 - Prob. 2LCCh. 6 - Prob. 3LCCh. 6 - Prob. 4LCCh. 6 - Discuss each of the following topics in class or...Ch. 6 - Prob. 1UTCh. 6 - Prob. 1CURPCh. 6 - Prob. 2CURPCh. 6 - Prob. 3CURPCh. 6 - Prob. 4CURPCh. 6 - Prob. 5CURPCh. 6 - Prob. 6CURPCh. 6 - Prob. 7CURPCh. 6 - Prob. 8CURPCh. 6 - Prob. 9CURPCh. 6 - Prob. 10CURPCh. 6 - Prob. 11CURPCh. 6 - Prob. 12CURPCh. 6 - Prob. 13CURPCh. 6 - Prob. 14CURPCh. 6 - Prob. 15CURP
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License