a.
Explanation of Solution
Given:
- Consider that the packet for Voice-over-IP contains p bytes and 5 bytes of header.
- The source is encoded at the rate of 128 kbps.
To Find: Packetization delay (in milliseconds).
Solution:
The time needed to fill (L * 8) bits are:
b.
Explanation of Solution
Given:
- Consider that the packet for Voice-over-IP contains p bytes and 5 bytes of header.
To Find:
- Packetization delay for L = 1500 bytes (in milliseconds).
- Packetization delay for L = 50 bytes (in milliseconds).
Solution:
The formula to find Packetization is:
For
Packetization delay for
Therefore, the Packetization delay is:
c.
Explanation of Solution
Given:
- Consider that the packet for Voice-over-IP contains p bytes and 5 bytes of header.
- The source is encoded at the rate of 128 kbps.
- Link Rate (R) = 622 Mbps for L = 1500 bytes and L = 50 bytes.
To Find: Store-and-forward delay
Solution:
The formula to find store-and-forward delay is
For
Store-and-forward delay for
Therefore, the store-and-forward delay is:
d.
Explanation of Solution
Advantage of using small packet size:
By using the smal...
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Computer Networking: A Top-Down Approach (7th Edition)
- Refer to page 35 for problems involving MapReduce. Instructions: • Implement a MapReduce program to solve the given problem (e.g., word count, data aggregation). Clearly outline the map and reduce functions, showing intermediate outputs for each step. • Test the program with a sample dataset and verify the correctness of the results. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 1 for problems on file system allocation. Instructions: Compare and simulate file allocation strategies (contiguous, linked, and indexed allocation). . Create a sample file system and allocate files using each strategy, showing intermediate structures. • Analyze space utilization and access time for each method. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 105 for problems on association rule mining. Instructions: • Implement the Apriori algorithm to identify frequent itemsets from the given dataset. • Compute support, confidence, and lift for each rule and interpret the results. Test the algorithm on a sample dataset and verify all intermediate computations. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forward
- Refer to page 25 for problems on symmetric encryption techniques. Instructions: • Implement a block cipher algorithm like AES or DES for the given plaintext and key. Show the key scheduling process and all encryption steps (substitution, permutation, etc.). Verify correctness by decrypting the ciphertext and recovering the original plaintext. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 65 for problems on RSA encryption and decryption. Instructions: • Perform key generation by selecting primes, computing n, o(n), and e. • Encrypt the given plaintext and decrypt the ciphertext, showing all modular arithmetic calculations. • Validate your solution by confirming that decryption recovers the original plaintext. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 95 for problems on optimizing functions using gradient descent. Instructions: Apply gradient descent to minimize the given cost function. Derive the gradients for each parameter and show the iterative updates. • Plot the convergence of the cost function with respect to iterations and verify correctness. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forward
- Refer to page 90 for problems on parallelizing matrix multiplication. Instructions: • Implement a parallel matrix multiplication algorithm using thread-level parallelism. Analyze the speedup and efficiency compared to the sequential approach. • Include performance metrics and test the implementation on different matrix sizes. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 85 for problems involving the A* search algorithm. Instructions: Implement the A* algorithm for the given problem, defining the heuristic function explicitly. Trace the algorithm's steps, showing the open and closed lists at each iteration. • Verify the optimality of the solution by analyzing the heuristic used. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 12 for problems on binary search trees (BSTs). Instructions: Construct a BST for the given set of elements. • Perform in-order, pre-order, and post-order traversals, showing the sequence of visited nodes. • Implement and explain operations such as insertion, deletion, and search. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forward
- Refer to page 55 for problems on cache memory. Instructions: • Solve a problem involving direct-mapped, set-associative, or fully associative cache. • Compute hit/miss ratios and explain the memory address mapping process. Show all calculations and verify your results with a sample memory access sequence. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 45 for problems involving software design patterns. Instructions: • Implement the given design pattem (e.g., Singleton, Factory, Observer) in a programming language of your choice. Provide a detailed explanation of the design and its benefits in the given context. Verify correctness by showing outputs for sample inputs. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ 9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 8 for problems on shortest path algorithms. Instructions: Implement and analyze Dijkstra's or Bellman-Ford algorithm for the given graph. • Demonstrate all steps, including initialization and updates at each iteration. Verify the correctness of the solution by comparing it to an alternate method. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward
- Computer Networking: A Top-Down Approach (7th Edi...Computer EngineeringISBN:9780133594140Author:James Kurose, Keith RossPublisher:PEARSONComputer Organization and Design MIPS Edition, Fi...Computer EngineeringISBN:9780124077263Author:David A. Patterson, John L. HennessyPublisher:Elsevier ScienceNetwork+ Guide to Networks (MindTap Course List)Computer EngineeringISBN:9781337569330Author:Jill West, Tamara Dean, Jean AndrewsPublisher:Cengage Learning
- Concepts of Database ManagementComputer EngineeringISBN:9781337093422Author:Joy L. Starks, Philip J. Pratt, Mary Z. LastPublisher:Cengage LearningPrelude to ProgrammingComputer EngineeringISBN:9780133750423Author:VENIT, StewartPublisher:Pearson EducationSc Business Data Communications and Networking, T...Computer EngineeringISBN:9781119368830Author:FITZGERALDPublisher:WILEY