![Pearson eText Life in the Universe -- Instant Access (Pearson+)](https://www.bartleby.com/isbn_cover_images/9780135234457/9780135234457_largeCoverImage.gif)
Pearson eText Life in the Universe -- Instant Access (Pearson+)
4th Edition
ISBN: 9780135234457
Author: Jeffrey Bennett, Seth Shostak
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 8RQ
Why do we think that evolution would have proceeded rapidly at first, and what fossil evidence supports this conclusion?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
need help on first part
its not 220
No chatgpt pls will upvote
No chatgpt pls
Chapter 6 Solutions
Pearson eText Life in the Universe -- Instant Access (Pearson+)
Ch. 6 - What are the three lines of fossil evidence that...Ch. 6 - How do studies of DNA sequences allow us to...Ch. 6 - Based on current evidence, what locations on Earth...Ch. 6 - What was the MillerUrey experiment, and how did it...Ch. 6 - What do we mean by an RNA world, and why do...Ch. 6 - Briefly summarize current ideas about the sequence...Ch. 6 - Briefly discuss the possibility that life migrated...Ch. 6 - Why do we think that evolution would have...Ch. 6 - Briefly discuss the early evolution of life, from...Ch. 6 - How do we think that eukaryotes evolved? What time...
Ch. 6 - What was the Cambrian explosion? Briefly discuss...Ch. 6 - How and when did life colonize land? Why did it...Ch. 6 - How do we know that the early Earth could not have...Ch. 6 - Summarize the history of the oxygen buildup as it...Ch. 6 - What was the KT impact, and how is it thought to...Ch. 6 - Briefly discuss the evidence for other mass...Ch. 6 - Discuss the threat that future impacts may pose to...Ch. 6 - Describe several adaptations that evolved so...Ch. 6 - When did hominids arise, and when did modern...Ch. 6 - Briefly describe and clarify a few common...Ch. 6 - Prob. 21RQCh. 6 - Briefly describe two main approaches to creating...Ch. 6 - We discover evidence of life, in the form of a...Ch. 6 - We discover an intact fossil of a eukaryotic cell,...Ch. 6 - We discover a preserved, 3.5-billion-year-old...Ch. 6 - We discover clear evidence that life arose on a...Ch. 6 - We discover a fossil of a large dinosaur that...Ch. 6 - We discover that, contrary to present belief,...Ch. 6 - We discover a crater from the impact of a...Ch. 6 - We discover an asteroid about 300 meters across...Ch. 6 - We find fossil remains of an early primate that...Ch. 6 - The first life created in the laboratory has an...Ch. 6 - The origin of life on Earth most likely occurred...Ch. 6 - The earliest living organisms probably were (a)...Ch. 6 - Prob. 35TYUCh. 6 - RNA world refers to (a) the possibility that life...Ch. 6 - Early life arose in an oxygen-free environment,...Ch. 6 - The oxygen in Earths atmosphere was originally...Ch. 6 - The Cambrian explosion refers to (a) a dramatic...Ch. 6 - Prob. 40TYUCh. 6 - The hypothesis that an impact killed the dinosaurs...Ch. 6 - According to the fossil evidence, modern humans...Ch. 6 - Origin of Life Studies. We cannot go back in time...Ch. 6 - A Brief History of Life on Earth. Take all the...Ch. 6 - Geology and Life. In Chapter 4, we discussed the...Ch. 6 - Prob. 48IFCh. 6 - Prob. 49IFCh. 6 - Impact Movie Review. Watch one of the Hollywood...Ch. 6 - Artificial Life Review. Numerous science fiction...Ch. 6 - Bacterial Evolution. Suppose that a mutation...Ch. 6 - Deep in Bacteria. In Cosmic Calculations 6.1, we...Ch. 6 - Prob. 54IFCh. 6 - Human Population Growth. During the twentieth...Ch. 6 - Impact Energy. Consider a comet about 2 kilometers...Ch. 6 - The Missing Link. As we discussed in this chapter,...Ch. 6 - Evolution by Choice. Consider the technology we...
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. A good scientific hypothesis is based on existing evidence and leads to testable predictions. What hypothes...
Campbell Biology: Concepts & Connections (9th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Why isn't FeBr3 used as a catalyst in the first step of the synthesis of 1,3,5-tribromobenzene?
Organic Chemistry (8th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Children playing in a playground on the flat roof of a city school lose their ball to the parking lot below. One of the teachers kicks the ball back up to the children as shown in the figure below. The playground is 6.10 m above the parking lot, and the school building's vertical wall is h = 7.40 m high, forming a 1.30 m high railing around the playground. The ball is launched at an angle of 8 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Find the speed (in m/s) at which the ball was launched. 18.1 m/s (b) Find the vertical distance (in m) by which the ball clears the wall. 0.73 ✓ m (c) Find the horizontal distance (in m) from the wall to the point on the roof where the ball lands. 2.68 m (d) What If? If the teacher always launches the ball…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at x = d = 0.0100 m. (a) the position of the electron y, = 2.60e1014 m (b) the…arrow_forwardNo chatgpt plsarrow_forward
- need help with the first partarrow_forwardA ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forward
- A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forward
- How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399920/9781337399920_smallCoverImage.gif)
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399944/9781337399944_smallCoverImage.gif)
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337672252/9781337672252_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168284/9781938168284_smallCoverImage.gif)
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305804562/9781305804562_smallCoverImage.jpg)
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY