Referring to Example 6-15 (a) At what speed will the force of static friction exerted on the car by the road be equal to half the weight of the car? The mass of the car is m = 1200 kg, the radius of the corner is r = 45 m, and the coefficient of static friction between the tires and the road is μ s = 0.82. (b) Suppose that the mass of the car is now doubled, and that it moves with a speed that again makes the force of static friction equal to half the car’s weight. Is this new speed greater than, less than, or equal to the speed in part (a)?
Referring to Example 6-15 (a) At what speed will the force of static friction exerted on the car by the road be equal to half the weight of the car? The mass of the car is m = 1200 kg, the radius of the corner is r = 45 m, and the coefficient of static friction between the tires and the road is μ s = 0.82. (b) Suppose that the mass of the car is now doubled, and that it moves with a speed that again makes the force of static friction equal to half the car’s weight. Is this new speed greater than, less than, or equal to the speed in part (a)?
Referring to Example 6-15 (a) At what speed will the force of static friction exerted on the car by the road be equal to half the weight of the car? The mass of the car is m = 1200 kg, the radius of the corner is r = 45 m, and the coefficient of static friction between the tires and the road is μs = 0.82. (b) Suppose that the mass of the car is now doubled, and that it moves with a speed that again makes the force of static friction equal to half the car’s weight. Is this new speed greater than, less than, or equal to the speed in part (a)?
Definition Definition Force that opposes motion when the surface of one item rubs against the surface of another. The unit of force of friction is same as the unit of force.
No chatgpt pls will upvote Already got wrong chatgpt answer
PART III - RESISTORS IN PARALLEL
Consider (but do not yet build) the circuit shown in the circuit diagram
to the left, which we will call Circuit 3. Make sure you are using Bert
bulbs. You may want to wire two batteries in series rather than use a
single battery.
7. Predict:
a) How will the brightness of bulb B3A compare to the brightness
to bulb B3B?
c)
X
E
B3A
b) How will the brightness of bulb BзA compare to the brightness of bulb B₁ from Circuit 1?
How will the currents at points X, Y, and Z be related?
www
d) How will the current at point X in this circuit compare to the current at point X from Circuit 1?
Y
Z
B3B
www
PART II - RESISTORS IN SERIES
Consider (but do not yet build) the circuit shown in the circuit diagram to the left,
which we will call Circuit 2. Make sure you are using Bert bulbs. You may want
to wire two batteries in series rather than use a single battery.
4. Predict:
a) How will the brightness of bulb B₂ compare to the brighness to bulb
B2B?
X
B2A
E
Y
B2B
Ꮓ
b) How will the brightness of bulb B2A compare to the brightness of bulb B₁ from Circuit 1?
c) How will the currents at points X, Y, and Z be related?
d) How will the current at point X in this circuit compare to the current at point X from Circuit 1?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.