BIO Heartbeat detector A prisoner tries to escape from a Nashville, Tennessee prison by hiding in the laundry truck. The prisoner is surprised when the truck is stopped at the gate. A guard enters the truck and handcuffs him. “How did you know I was here?” the prisoner asks. “The heartbeat detector,” says the guard. A heartbeat detector senses the tiny vibrations caused by blood pumped from the heart. With each heartbeat, blood is pumped upward to the aorta, and the body recoils slightly, conserving the momentum of the blood-body system. The body’s vibrations are transferred to the inside of the truck. Vibration sensors on the outside of the truck are linked to a geophone, or signal amplifier, attached to a computer. A wave analyzer program in the computer compares vibration signals from the truck to wavelets produced by heartbeat vibrations. The wave analyzer distinguishes a person’s heartbeat from other vibrations in the truck or in the surrounding environment, allowing guards to detect the presence of a human in the truck. Suppose 0.080 kg of blood moving upward in the aorta at 0.8 m/s reverses direction in 0.16 s when it reaches the aortic arch. If a prisoner is trying to escape from prison by hiding in a laundry truck, and the mass of his body is 70 kg, which is the closest to the speed his body is moving immediately after the blood changes direction passing through the aortic arch? a. 0.0009 m/s b. 0.002 m/s c. 0.8 m/s d. 0.08 m/s e. 0.01 m/s
BIO Heartbeat detector A prisoner tries to escape from a Nashville, Tennessee prison by hiding in the laundry truck. The prisoner is surprised when the truck is stopped at the gate. A guard enters the truck and handcuffs him. “How did you know I was here?” the prisoner asks. “The heartbeat detector,” says the guard. A heartbeat detector senses the tiny vibrations caused by blood pumped from the heart. With each heartbeat, blood is pumped upward to the aorta, and the body recoils slightly, conserving the momentum of the blood-body system. The body’s vibrations are transferred to the inside of the truck. Vibration sensors on the outside of the truck are linked to a geophone, or signal amplifier, attached to a computer. A wave analyzer program in the computer compares vibration signals from the truck to wavelets produced by heartbeat vibrations. The wave analyzer distinguishes a person’s heartbeat from other vibrations in the truck or in the surrounding environment, allowing guards to detect the presence of a human in the truck. Suppose 0.080 kg of blood moving upward in the aorta at 0.8 m/s reverses direction in 0.16 s when it reaches the aortic arch. If a prisoner is trying to escape from prison by hiding in a laundry truck, and the mass of his body is 70 kg, which is the closest to the speed his body is moving immediately after the blood changes direction passing through the aortic arch? a. 0.0009 m/s b. 0.002 m/s c. 0.8 m/s d. 0.08 m/s e. 0.01 m/s
BIO Heartbeat detector A prisoner tries to escape from a Nashville, Tennessee prison by hiding in the laundry truck. The prisoner is surprised when the truck is stopped at the gate. A guard enters the truck and handcuffs him. “How did you know I was here?” the prisoner asks. “The heartbeat detector,” says the guard.
A heartbeat detector senses the tiny vibrations caused by blood pumped from the heart. With each heartbeat, blood is pumped upward to the aorta, and the body recoils slightly, conserving the momentum of the blood-body system. The body’s vibrations are transferred to the inside of the truck. Vibration sensors on the outside of the truck are linked to a geophone, or signal amplifier, attached to a computer. A wave analyzer program in the computer compares vibration signals from the truck to wavelets produced by heartbeat vibrations. The wave analyzer distinguishes a person’s heartbeat from other vibrations in the truck or in the surrounding environment, allowing guards to detect the presence of a human in the truck.
Suppose 0.080 kg of blood moving upward in the aorta at 0.8 m/s reverses direction in 0.16 s when it reaches the aortic arch. If a prisoner is trying to escape from prison by hiding in a laundry truck, and the mass of his body is 70 kg, which is the closest to the speed his body is moving immediately after the blood changes direction passing through the aortic arch?
If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?
Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field
of strength B. The field is pointing directly up the page in the plane of the page. The loop is
oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the
normal vector for the loop is always in the plane of the page!). In the illustrations below the
magnetic field is shown in red and the current through the current loop is shown in blue. The
loop starts out in orientation (i) and rotates clockwise, through
orientations (ii) through (viii)
before returning to (i).
(i)
Ø I N - - I N -
(iii)
(iv)
(v)
(vii)
(viii)
a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector
μ of the current loop and indicate whether the torque on the dipole due to the magnetic field
is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the
loop experience the maximum magnitude of torque?
[Hint: Use the…
Please help with calculating the impusle, thanks!
Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse:
1.Measure the weight of the balls and determine their mass.
Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg
The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Second
Chapter 6 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.